Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gallagher, J. S.

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Constraining Stellar Feedbacks: Photo-ionization vs. Shock-ionization in Local Starburst Galaxiescitations

Places of action

Chart of shared publication
Dopita, M. A.
1 / 1 shared
Kennicutt, R. C.
1 / 4 shared
Pellerin, A.
1 / 1 shared
Chandar, R.
1 / 1 shared
Hong, Sungryong
1 / 1 shared
Martin, C.
1 / 11 shared
Calzetti, D.
1 / 3 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Dopita, M. A.
  • Kennicutt, R. C.
  • Pellerin, A.
  • Chandar, R.
  • Hong, Sungryong
  • Martin, C.
  • Calzetti, D.
OrganizationsLocationPeople

document

Constraining Stellar Feedbacks: Photo-ionization vs. Shock-ionization in Local Starburst Galaxies

  • Dopita, M. A.
  • Kennicutt, R. C.
  • Pellerin, A.
  • Gallagher, J. S.
  • Chandar, R.
  • Hong, Sungryong
  • Martin, C.
  • Calzetti, D.
Abstract

We present the small- and intermediate-scale structure of interstellar medium(ISM) of five local starburst galaxies; NGC1569, NGC4449, Holmberg II, NGC5236, and HE2-10. Each galaxy has four narrow band images for H-beta(4861A), [OIII](5007A), H-alpha(6563A), and [SII](6717,6731A) (or [NII](6583A)), imaged by Advanced Camera for Survey(ACS), Wide Field Planetary Camera 2(WFPC2), and Wide Field Camera 3(WFC3) of the Hubble Space Telescope(HST). We produce line diagnostics diagrams from those narrow band images on a pixel-by-pixel basis and discriminate shock-ionized gas (pixels) by using the ``maximum starburst line'' of Kewley et al. (2001). The properties of line ratios, [SII]/H-alpha vs [OIII]/H-beta, H-alpha vs [OIII]/H-beta, and H-alpha vs [SII]/H-alpha, for photo-ionized gas are well explained by the photo-ionization model of Kewley et al. (2001). When comparing the four galaxies, NGC3077, NGC4214, NGC5236, and NGC5253, previously studied in Calzetti et al. (2004) with our galaxies, we have found similar groups which share the same trend in line ratio plots. The origin of the groups can be explained by the effects of different metallicity and different starforming strength with respect to potential depth, which are strongly related to cooling rate and galactic wind driving mechanism. We compare the shock-ionized gas with shock-ionization model of Allen et al. (2008). Although the ``maximum starburst line'' gives us conservative estimation of shock-ionized gas, our rough estimation of shock velocity 250km/s of HE2-10 is consistent with Mendez et al. (1999). As an Appendix, we present a new objective technique for continuum subtraction from narrow-band image. We have found that skewness values of continuum subtracted images show a transitional feature around the optimal subtraction. We present some real applications and discuss about the strong points and the weak points of this technique....

Topics
  • impedance spectroscopy
  • strength