Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jaillet, Léonard

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Impact of Hydrogen on Graphene-based Materials: Atomistic Modeling and Simulation of HRSTEM Imagescitations

Places of action

Chart of shared publication
Guedj, Cyril
1 / 9 shared
Rousse, François
1 / 1 shared
Redon, Stephane
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Guedj, Cyril
  • Rousse, François
  • Redon, Stephane
OrganizationsLocationPeople

document

Impact of Hydrogen on Graphene-based Materials: Atomistic Modeling and Simulation of HRSTEM Images

  • Guedj, Cyril
  • Rousse, François
  • Redon, Stephane
  • Jaillet, Léonard
Abstract

The hydrogen energy transition is highly probable, because hydrogen is the most abundant element in the universe and represents an ideal “green” source of energy. Meanwhile, the safe hydrogen production and storage remains a major challenge still in progress. Potential production and storage materials include graphene. In terms of electronic and optoelectronic applications, hydrogen can tune the bandgap of graphene [1]. Hydrogen also plays a major role during the Chemical Vapour Decomposition (CVD) growth of graphene [2]. Hence, hydrogenated graphene-based materials are potentially relevant for various technological applications.To understand and optimize the device efficiency and the interface engineering, it is advantageous to perform advanced nanocharacterizations, linked to numerical modelling and simulations. This task is particularly difficult, because hydrogen is labile and prone to rapid reorganization. This structural evolution may be monitored with transmission electron microscopy (TEM) techniques [3,4,5], but in spite of significant progresses, the direct detection of hydrogen with High Resolution Scanning Transmission Electron Microscopy (HRSTEM) or energy-loss spectroscopy still remains a serious challenge.We investigate here the interaction of hydrogen with graphene using the Brenner module of the SAMSON software platform https://www.samson-connect.net and we propose an original methodology to characterize its structural arrangement at the atomic scale by simulating HRSTEM images to interpret experimental results. In particular, we compare the effect of hydrogen on dark field (DF), bright field (BF), high-angle annular dark filed (HAADF) and annular bright field (ABF) images, to estimate the best technique suited to hydrogen detection.In addition, we present the effect of carbon vacancies and adatoms on the stability of hydrogen coverage, associated to the HRSTEM signatures of the most stable configurations. These results provide the necessary building blocks to analyze the structure and energetics of hydrogenated graphene-based materials at the atomic scale.

Topics
  • impedance spectroscopy
  • Carbon
  • simulation
  • Hydrogen
  • transmission electron microscopy
  • chemical vapor deposition
  • decomposition