People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pickering, Simon G.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2017Distance Estimation by Fusing Radar and Monocular Camera with Kalman Filter
- 2017Nonlinear imaging of damage in composite structures using sparse ultrasonic sensor arrayscitations
- 2014Nonlinear damage detection in composite structures using bispectral analysiscitations
- 2014Analysis of the delamination detection capabilities of pulse stimulated thermographic nondestructive testing techniques
- 2014Failure analysis of impact-damaged/hygrothermally aged fiber-reinforced polymer matrix composite joints subjected to bend loading
- 2014Analysis of the defect detection capabilities of pulse stimulated thermographic NDE techniquescitations
- 2013Transient thermography testing of unpainted thermal barrier coating (TBC) systemscitations
- 2013LED optical excitation for the long pulse and lock-in thermographic techniquescitations
- 2012Damage assessment of impact damages on CFRP with laser shearography
- 2011A comparison of the pulsed, lock-in and frequency modulated thermography nondestructive evaluation techniquescitations
- 2010Comparison of the defect detection capabilities of flash thermography and vibration excitation shearographycitations
Places of action
Organizations | Location | People |
---|
document
Damage assessment of impact damages on CFRP with laser shearography
Abstract
CFRP material becomes widely used in Aviation industry for substituting or complementing conventional material compositions. There are various advantages in comparison to conventional material that has been used so far, but also some disadvantages. Among those there is the difficulty to detect and estimate impact damages by visual inspection, as it has been carried out at e.g. aluminum material. CFRP material with its own particular behavior to impacts, caused by rough environments (e.g. stone, ice or bird impact, tool drop, etc.) makes visual inspection more difficult. Therefore investigation and defect estimation becomes more and more crucial in maintenance of composite material. The typical material behavior to an impact leaves only a small or even no visible indication on the material surface, but there is indeed a deeper damage extended in the material. Shearography full-field inspection method reveals the extension of the impact damages providing a base for decision of repair. This paper shows various impact damage examples on a CFRP stringer material with its extension into the material beyond the visible area. The metric impact determination allows obtaining data for comparison and/ or catalog of the defects.