Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Foss, Morten

  • Google
  • 17
  • 75
  • 531

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2023Comment on “Which fraction of stone wool fibre surface remains uncoated by binder? A detailed analysis by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy” by Hirth et al., 2021, RSC Adv., 11, 39545, DOI: 10.1039/d1ra06251d2citations
  • 2023Thermochemical oxidation of commercially pure titanium; controlled formation of robust white titanium oxide layers for biomedical applications4citations
  • 2023Thermochemical oxidation of commercially pure titanium; controlled formation of robust white titanium oxide layers for biomedical applications.4citations
  • 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bone9citations
  • 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bone9citations
  • 2022The dissolution of stone wool fibers with sugar-based binder and oil in different synthetic lung fluids12citations
  • 2021Post-treatments of polydopamine coatings influence cellular response36citations
  • 2018A comparative in vivo study of strontium-functionalized and SLActive (TM) implant surfaces in early bone healing27citations
  • 2017Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slag- and fly-ash-like compositions133citations
  • 2015Response of MG63 osteoblast-like cells to ordered nanotopographies fabricated using colloidal self-assembly and glancing angle deposition13citations
  • 2015Modulation of Human Mesenchymal Stem Cell Behavior on Ordered Tantalum Nanotopographies Fabricated Using Colloidal Lithography and Glancing Angle Deposition57citations
  • 2015Low-aspect ratio nanopatterns on bioinert alumina influence the response and morphology of osteoblast-like cells38citations
  • 2012Temperature-induced ultradense PEG polyelectrolyte surface grafting provides effective long-term bioresistance against mammalian cells, serum, and whole blood51citations
  • 2011Growth characteristics of inclined columns produced by Glancing Angle Deposition (GLAD) and colloidal lithography23citations
  • 2010Synthesis of functional nanomaterials via colloidal mask templating and glancing angle deposition (GLAD)”citations
  • 2009Polycaprolactone nanomesh cultured with hMSC evaluated by synchrotron tomographycitations
  • 2009The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralization113citations

Places of action

Chart of shared publication
Tougaard, Sven
1 / 2 shared
Solvang, Mette
1 / 6 shared
Ceccato, Marcel
3 / 9 shared
Pezennec, Eric
1 / 1 shared
Okhrimenko, Denis V.
1 / 1 shared
Somers, Marcel A. J.
2 / 104 shared
Körkel, Andreas F. K.
2 / 2 shared
Jellesen, Morten S.
2 / 7 shared
Christiansen, Thomas L.
2 / 43 shared
Berglund Davidsen, Maiken
1 / 1 shared
Van Malderen, Stijn
1 / 1 shared
Offermanns, Vincent
3 / 3 shared
Andersen, Ole Zoffmann
3 / 3 shared
Garrevoet, Jan
2 / 6 shared
Birkedal, Henrik
2 / 17 shared
Christensen, Thorbjoern Erik Koeppen
1 / 1 shared
Christensen, Thorbjørn Erik Køppen
1 / 1 shared
Malderen, Stijn Van
1 / 1 shared
Davidsen, Maiken Berglund
1 / 1 shared
Bøtner, J. A.
1 / 1 shared
Riis, H. K.
1 / 1 shared
Okhrimenko, D. V.
1 / 8 shared
Solvang, M.
1 / 8 shared
Ceccato, M.
1 / 3 shared
Souza, Pedro P. C.
1 / 1 shared
Kraft, David
1 / 1 shared
Teixeira, Jorge Felipe Lima
1 / 1 shared
Davidsen, Maiken B.
1 / 1 shared
Karlsson, Christian
1 / 1 shared
Dehli, Jeppe
1 / 1 shared
Almtoft, Klaus P.
1 / 2 shared
Andersen, Inge H.
1 / 1 shared
Kloss, Frank
1 / 1 shared
Sillassen, Michael
1 / 3 shared
Andersen, Ole Z.
1 / 1 shared
Macphee, Donald E.
1 / 4 shared
Skibsted, Jørgen
1 / 41 shared
Matchei, Thomas
1 / 1 shared
Newlands, Katrina C.
1 / 2 shared
Bennetsen, Dines T.
2 / 2 shared
Thissen, Helmut
2 / 9 shared
Kingshott, Peter
2 / 9 shared
Wang, Peng-Yuan
2 / 2 shared
Ameringer, Thomas
1 / 1 shared
Schickle, Karolina
1 / 2 shared
Keller, Adrian
1 / 5 shared
Fischer, Horst
1 / 9 shared
Davtalab, Roswitha
1 / 1 shared
Wittenbrink, Isabel
1 / 1 shared
Hausmann, Anne
1 / 1 shared
Lauria, Ines
1 / 3 shared
Ogaki, Ryosuke
1 / 2 shared
Pedersen, Jan Skov
1 / 24 shared
Kolind, Kristian
1 / 1 shared
Jensen, G. V.
1 / 1 shared
Kraft, D. C. E.
1 / 1 shared
Besenbacher, Flemming
4 / 25 shared
Sutherland, Duncan S.
2 / 5 shared
Dolatshahi-Pirouz, Alireza
2 / 19 shared
Jensen, Thomas Bo
1 / 1 shared
Chevallier, Jacques
1 / 4 shared
Vorup-Jensen, Thomas
1 / 2 shared
Riber-Hansen, Rikke
1 / 1 shared
Andersen, Morten Østergaard
1 / 2 shared
Kjems, Jørgen
1 / 6 shared
Cloetens, Peter
1 / 24 shared
Nygaard, Jens Vinge
1 / 3 shared
Kassem, Moustapha
1 / 4 shared
Lovmand, Michael
1 / 1 shared
Justesen, Jeannette
1 / 1 shared
Lauridsen, Rune Hoff
1 / 1 shared
Lovmand, Jette
1 / 1 shared
Pedersen, Finn Skou
1 / 1 shared
Modin, Charlotte
1 / 1 shared
Duch, Mogens
1 / 1 shared
Chart of publication period
2023
2022
2021
2018
2017
2015
2012
2011
2010
2009

Co-Authors (by relevance)

  • Tougaard, Sven
  • Solvang, Mette
  • Ceccato, Marcel
  • Pezennec, Eric
  • Okhrimenko, Denis V.
  • Somers, Marcel A. J.
  • Körkel, Andreas F. K.
  • Jellesen, Morten S.
  • Christiansen, Thomas L.
  • Berglund Davidsen, Maiken
  • Van Malderen, Stijn
  • Offermanns, Vincent
  • Andersen, Ole Zoffmann
  • Garrevoet, Jan
  • Birkedal, Henrik
  • Christensen, Thorbjoern Erik Koeppen
  • Christensen, Thorbjørn Erik Køppen
  • Malderen, Stijn Van
  • Davidsen, Maiken Berglund
  • Bøtner, J. A.
  • Riis, H. K.
  • Okhrimenko, D. V.
  • Solvang, M.
  • Ceccato, M.
  • Souza, Pedro P. C.
  • Kraft, David
  • Teixeira, Jorge Felipe Lima
  • Davidsen, Maiken B.
  • Karlsson, Christian
  • Dehli, Jeppe
  • Almtoft, Klaus P.
  • Andersen, Inge H.
  • Kloss, Frank
  • Sillassen, Michael
  • Andersen, Ole Z.
  • Macphee, Donald E.
  • Skibsted, Jørgen
  • Matchei, Thomas
  • Newlands, Katrina C.
  • Bennetsen, Dines T.
  • Thissen, Helmut
  • Kingshott, Peter
  • Wang, Peng-Yuan
  • Ameringer, Thomas
  • Schickle, Karolina
  • Keller, Adrian
  • Fischer, Horst
  • Davtalab, Roswitha
  • Wittenbrink, Isabel
  • Hausmann, Anne
  • Lauria, Ines
  • Ogaki, Ryosuke
  • Pedersen, Jan Skov
  • Kolind, Kristian
  • Jensen, G. V.
  • Kraft, D. C. E.
  • Besenbacher, Flemming
  • Sutherland, Duncan S.
  • Dolatshahi-Pirouz, Alireza
  • Jensen, Thomas Bo
  • Chevallier, Jacques
  • Vorup-Jensen, Thomas
  • Riber-Hansen, Rikke
  • Andersen, Morten Østergaard
  • Kjems, Jørgen
  • Cloetens, Peter
  • Nygaard, Jens Vinge
  • Kassem, Moustapha
  • Lovmand, Michael
  • Justesen, Jeannette
  • Lauridsen, Rune Hoff
  • Lovmand, Jette
  • Pedersen, Finn Skou
  • Modin, Charlotte
  • Duch, Mogens
OrganizationsLocationPeople

document

Polycaprolactone nanomesh cultured with hMSC evaluated by synchrotron tomography

  • Foss, Morten
  • Besenbacher, Flemming
  • Andersen, Morten Østergaard
  • Kjems, Jørgen
  • Cloetens, Peter
  • Nygaard, Jens Vinge
  • Kassem, Moustapha
Abstract

<p class="MsoNormal">Introduction</p><p><span style="font-size: 9.5pt; font-family: Times-Roman">Cell response is closely related to substrate stiffness. </span><span style="font-size: 10pt; font-family: 'Times New Roman'">Successful induced tissue repair from bioengineered constructs must possess both optimal bioactivity and mechanical strength. This is because cell interaction with the extracellular matrix (ECM) produces two different but concurrent signaling mechanisms: ligation-induced signaling, which depends on ECM biological stimuli, and traction-induced signaling, which depends on ECM mechanical stimuli, [1]. Different substrate stiffness </span><span style="font-size: 10pt; font-family: 'Times New Roman'">have</span><span style="font-size: 8pt; font-family: 'Times New Roman'"> </span><span style="font-size: 10pt; font-family: 'Times New Roman'">contrasting effects on migration and proliferation, where cells migrate faster on softer substrates while proliferating preferentially on the stiffer ones. This implicates that substrate rigidity is a critical design parameter in the development of scaffolds aimed at eliciting maximal cell and tissue function. From mechanics it is known that the stiffness of a porous structures scales with the relative density of the porous material, [2]. Hence, variations of substrate rigidity can be controlled through changes in relative density of the substrate itself. In three dimensional porous scaffolds, the substrate is equivalent to struts or beams randomly orientated in space making an interconnected network. These beams are called Plateau borders and are typically solid structures. Thus their stiffness depends solely on the stiffness of the selected biopolymer and the method of production. In this study we demonstrate that it is possible to control the porosity not only of the macroscopic porous scaffold but also of the Plateau borders constituting the scaffold.</span></p><p> </p><p class="MsoNormal" style="text-align: justify">Materials and Methods</p><p class="MsoNormal" style="text-align: justify">Polycaprolactone scaffolds were prepared by thermal induced phase separation followed by lyophilization. Processing conditions were chosen to range the relative density of the obtained scaffolds and its Plateau borders. Naked scaffolds and scaffolds cultivated statically with human bone marrow stromal cells, [3], for 24 hours, 14 days, and 21 days and prepared for holo-tomography.</p><p class="MsoNormal" style="text-align: justify">Synchrotron generated hard X-rays were used to perform quantitative phase sensitive holo-tomography at the ID19 beamline to obtain three-dimensional images of the processed and cultivated scaffolds, [4].</p><p class="MsoNormal" style="text-align: justify"></p><p class="MsoNoSpacing">Results and Discussion</p><p class="Columntext" style="margin-top: 4pt; margin-right: 0cm; margin-left: 0cm; margin-bottom: 0.0001pt; line-height: normal"><span style="font-size: 10pt">We have demonstrated that a double graded microstructure can be synthesised in this polycaprolactone system. It is possible to obtain specimens with solid Plateau borders, intermediate structures as shown in the figure and fully inversed microstructures in which the Plateau borders is demished and converted into a three dimensional nano sized mesh. <span class="Apple-style-span" style="font-family: 'Times New Roman', Arial, Helvetica, sans-serif">Results from specimens containing human stem cells show the attachement of cells to Plateau borders for the specimens cultivated for 24 hours. Specimens cultivated for 2 and 3 weeks shown the formations of extracellular matrix. </span></span></p><p class="MsoNormal" style="text-align: justify"></p><p class="MsoNormal">Conclusions</p><p class="MsoNormal" style="text-align: justify"><span style="font-size: 10pt; font-family: 'Times New Roman'">We have demonstrated that it is possible to control the microstructure of polycaprolactone based scaffolds. Microstructures can evolve into single and double graded structures, but also three dimensional fibrous nano meshes is realized. The morphology of the scaffold with and without human stem cells was investigated using tomography and numerical models were prepared for micromechanical modeling of cell scaffold interaction.<span class="Apple-style-span" style="font-family: Tahoma, Arial, Helvetica, sans-serif"> </span></span></p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • phase
  • tomography
  • strength
  • porosity
  • small-angle neutron scattering
  • bioactivity