People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Javadi, Yashar
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2022Mechanical stress measurement using phased array ultrasonic system
- 2022Collaborative robotic wire + arc additive manufacture and sensor-enabled in-process ultrasonic non-destructive evaluationcitations
- 2022Collaborative robotic Wire + Arc Additive Manufacture and sensor-enabled in-process ultrasonic Non-Destructive Evaluationcitations
- 2021Feed forward control of welding process parameters through on-line ultrasonic thickness measurementcitations
- 2021Non-contact in-process ultrasonic screening of thin fusion welded jointscitations
- 2020In-process calibration of a non-destructive testing system used for in-process inspection of multi-pass weldingcitations
- 2020Laser-assisted surface adaptive ultrasound (SAUL) inspection of samples with complex surface profiles using a phased array roller-probe
- 2019Ultrasonic phased array inspection of wire + arc additive manufacture samples using conventional and total focusing method imaging approachescitations
- 2019Ultrasonic phased array inspection of wire plus arc additive manufacture samples using conventional and total focusing method imaging approachescitations
- 2019Ultrasonic phased array inspection of a Wire + Arc Additive Manufactured (WAAM) sample with intentionally embedded defectscitations
- 2018Evolution of microstructure and toughness in 2.25Cr-1Mo steel weldscitations
- 2018Laser induced phased arrays for remote ultrasonic imaging of additive manufactured components
- 2018Ultrasonic phased array inspection of wire plus arc additive manufacture (WAAM) samples using conventional and total focusing method (TFM) imaging approaches
- 2017Comparison between using longitudinal and shear waves in ultrasonic stress measurement to investigate the effect of post-weld heat-treatment on welding residual stressescitations
- 2017Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91citations
- 2017Measurement of residual stresses induced by sequential weld buttering and cladding operations involving a 2.25Cr-1Mo substrate materialcitations
- 2016Topographic inspection as a method of weld joint diagnosticcitations
- 2016Investigation of mechanical properties in welding of shape memory alloyscitations
- 2016Evaluation of hoop residual stress variations in the thickness of dissimilar welded pipes by using the LCR ultrasonic wavescitations
- 2015Comparison between using longitudinal and shear waves in ultrasonic stress measurement to investigate the effect of post-weld heat-treatment on welding residual stressescitations
- 2015Sub-surface stress measurement of cross welds in a dissimilar welded pressure vesselcitations
- 2015Evaluation of welding residual stress in a nickel alloy pressure vessel using the ultrasonic stress measurement technique
- 2014Ultrasonic stress evaluation through thickness of a stainless steel pressure vesselcitations
- 2014Nondestructive evaluation of welding residual stresses in austenitic stainless steel platescitations
- 2013Ultrasonic inspection of a welded stainless steel pipe to evaluate residual stresses through thicknesscitations
- 2013Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel platescitations
- 2013Ultrasonic evaluation of welding residual stresses in stainless steel pressure vesselcitations
- 2013Comparison between contact and immersion ultrasonic method to evaluate welding residual stresses of dissimilar jointscitations
- 2013Employing the LCR waves to measure longitudinal residual stresses in different depths of a stainless steel welded platecitations
- 2013Nondestructive evaluation of welding residual stresses in dissimilar welded pipescitations
- 2012Residual stress evaluation in dissimilar welded joints using finite element simulation and the L CR ultrasonic wavecitations
Places of action
Organizations | Location | People |
---|
document
Mechanical stress measurement using phased array ultrasonic system
Abstract
Background, Motivation and Objective <br/>In this paper, a new ultrasonic system is developed to measure the mechanical stresses. The study is part of a larger research project to use the Phased Array Ultrasonic Testing (PAUT) system for the residual stress measurement of high-value manufacturing and safety-critical components, like aerospace, wind turbines and nuclear structures. The stress measurement using the ultrasonic method is explained by the acoustoelastic effect which is based on the sound velocity change in an elastic material subjected to the static stress field. <br/><br/>Statement of Contribution/Methods <br/>Single element transducers are conventionally used for stress measurement using the ultrasonic method while the PAUT system is innovatively used in this paper. The mechanical stresses, tensile and compressive, are applied using a customized tensile test machine and vice clamp system. The ultrasonic arrays are 5 MHz transducers manufactured by IMASONIC (France) and configured in Longitudinal Critically Refracted (LCR) setup (see Fig. 1). The transmitter array generates 8 ultrasonic waves which are received by 8 elements of the receiver array. Therefore, a matrix of 8 × 8 acoustic paths can be generated. This has resulted in higher stress measurement accuracy, compared to the traditional setup in which only one acoustic path can be generated using two single element transducers, through minimization of the Time of Flight (ToF) measurement error, created by transmitter triggering uncertainty, wave speed changes in the transducers/wedge, positioning uncertainty, transducer alignment and material texture effects. Additionally, a higher measurement resolution was achieved because of the lower distance between the elements, array pitch was 0.5 mm compared to the >10 mm transducers distance in the single element setup.<br/><br/>Results/Discussion <br/>The PAUT-LCR system was able to detect variations in ToFs of the sample subjected to the stress changes. Therefore, the mechanical stress was successfully measured using this newly developed PAUT-LCR system. Using the acoustoelasticity law, the novel setup was also used to measure the acoustoelastic coefficient required for future residual stress measurement.<br/>