Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ylanen, H.

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005The sintering range of porous bioactive glassescitations

Places of action

Chart of shared publication
Hupa, Leena
1 / 90 shared
Arstila, H.
1 / 3 shared
Vedel, E.
1 / 3 shared
Hupa, Mikko
1 / 30 shared
Froberg, L.
1 / 1 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Hupa, Leena
  • Arstila, H.
  • Vedel, E.
  • Hupa, Mikko
  • Froberg, L.
OrganizationsLocationPeople

article

The sintering range of porous bioactive glasses

  • Hupa, Leena
  • Arstila, H.
  • Vedel, E.
  • Hupa, Mikko
  • Ylanen, H.
  • Froberg, L.
Abstract

The sintering properties of four established bioactive glasses and four novel glass compositions within the range of interest for bioactivity were studied. The sintering behaviour was evaluated using optical heating microscopy and DTA. Crushed glasses with different particle sizes were sintered into cylindrical bodies using several time temperature parameters. The porosity and the pore size were calculated from the cross sectional surfaces of the cylinders using SEM images. The composition of the crystals formed in heat treated glasses was studied by XRD and SEM/EDXA. Devitrification of the glasses started with either the crystallisation of Na2Ca2Si3O9 at around 650-700 degrees C or with the crystallisation of CaSiO3 at around 850-880 degrees C The composition of the primary crystalline phase formed in the glasses during heat treatment is decisive for the choice of glass composition for porous implants. Glass compositions forming CaSiO3 crystals are of interest for sintering purposes, as their devitrification temperature is high enough to allow viscous flow before devitrification. The maximum pore size of the implants increases with particle size whereas the total porosity was related to sintering temperature and time. The sintering parameters giving a desired porosity depend on the viscosity of the glass and thus, on its chemical composition.

Topics
  • porous
  • impedance spectroscopy
  • pore
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • crystalline phase
  • glass
  • glass
  • viscosity
  • chemical composition
  • forming
  • Energy-dispersive X-ray spectroscopy
  • porosity
  • sintering
  • differential thermal analysis
  • bioactivity