Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Blyberg, Louise

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Timber/Glass Adhesive Bonds : Experimental testing and evaluation methodscitations

Places of action

Chart of shared publication
Sterley, Magdalena
1 / 6 shared
Enquist, Bertil
1 / 6 shared
Serrano, Erik
1 / 32 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Sterley, Magdalena
  • Enquist, Bertil
  • Serrano, Erik
OrganizationsLocationPeople

report

Timber/Glass Adhesive Bonds : Experimental testing and evaluation methods

  • Sterley, Magdalena
  • Enquist, Bertil
  • Serrano, Erik
  • Blyberg, Louise
Abstract

<p>Both timber and glass are materials that have aesthetically pleasing properties. An appealing idea is to combine them to overcome the drawbacks and utilise the beneficial mechanical properties. Adhesive bonding with an appropriate adhesive could provide a uniform stress distribution at the transition between the materials.</p><p>This report presents a study of three different adhesives, silicone, acrylate and polyurethane. Intentionally, adhesives with a wide range of properties were chosen. The adhesive bonds between timber and glass were tested both in tension and in shear with rather small bonds, 800 mm<sup>2</sup>. Special fixtures were designed both for gluing and testing of the adhesive bond specimens studied. The results presented include a traditional study of strength, failure type and relative displacement measured with LVDT’s, but also an extended study with a non-contact optical 3D-deformation measuring system and finite element modelling.</p><p>Of the adhesives tested, the acrylate (SikaFast 5215) performed best, both in tension and shear. The mean strength obtained for this adhesive was 3.0 MPa in tension and 4.5 MPa in shear. Even if an important factor when gluing glass is the load distribution ability, the flexible silicone adhesive has too low stiffness and strength for use in structural components, where structural refers to the ability of a component to carry loads other than its own weight.</p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • strength