People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Serrano, Erik
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Mode I cohesive law of birch wood-biobased adhesive systems
- 2024Impact of Acetylation on the Behaviour of Single-Dowel Timber Connections
- 2023Experimental Testing and Numerical Evaluation of the Strain-softening Behavior of Birch Using a Cross-validation Calibration Approach
- 2021Moisture-dependency of the fracture energy of woodcitations
- 2021Numerical modelling of wood under combined loading of compression perpendicular to the grain and rolling shearcitations
- 2021Numerical modelling of wood under combined loading of compressionperpendicular to the grain and rolling shearcitations
- 2021Moisture-dependency of the fracture energy of wood : A comparison of unmodified and acetylated Scots pine and birchcitations
- 2021A numerical study of the stiffness and strength of cross-laminated timber wall-to-floor connections under compression perpendicular to the graincitations
- 2020Fracture characteristics of acetylated young Scots pinecitations
- 2019Fracture of laminated bamboo and the influence of preservative treatmentscitations
- 2019Fracture of laminated bamboo and the influence of preservative treatmentscitations
- 2019Modelling of wood under compression perpendicular to the grain with rolling shear in cross-laminated timber
- 2018Experimental study of dowel design in the shear plate dowel joint
- 2017Strength and stiffness of cross laminated timber at in-plane beam loading
- 2017Impact of knots on the fracture propagating along grain in timber beamscitations
- 2016Integrative experimental characterization and engineering modeling of single-dowel connections in LVLcitations
- 2016Experimental characterization of the global and local behavior of multi-dowel LVL-connections under complex loadingcitations
- 2016Bond line models of glued wood-to-steel plate jointscitations
- 2015Effective stiffness prediction of GLT beams based on stiffness distributions of individual lamellascitations
- 2014Influence of Wooden Board Strength Class on the Performance of Cross-laminated Timber Plates Investigated by Means of Full-field Deformation Measurementscitations
- 2014Joint study on material properties of adhesives to be used in load-bearing timber-glass composite elements.
- 2013Fracture characterisation of green glued-polyurethane adhesive bonds in Mode Icitations
- 2011Wet glued laminated beams using side boards of Norway spruce
- 2010Timber/Glass Adhesive Bonds : Experimental testing and evaluation methods
- 2009Flat wise green gluing of Norway spruce for structural application
- 2008An experimental study of the effects of moisture variations and gradients in the joint area in steel-timber dowel jointscitations
- 2007Dowel type joints – Influence of moisture changes and dowel surface smoothness
- 2006A numerical study of the effects of stresses induced by moisture gradients in steel-to-timber dowel jointscitations
- 2002A rational adhesive joint strength analysis by non-linear fracture mechanics
- 2001Glued-In Rods for Timber Structures - Development of a Calculation Model
- 2000Finger-Joints and Laminated Wood. Final Report for the BFR-project
- 2000Adhesive Joints in Timber Engineering. Modelling and Testing of Fracture Properties
Places of action
Organizations | Location | People |
---|
report
Wet glued laminated beams using side boards of Norway spruce
Abstract
In a previous research project, carried out during the years 2006-2008, the possibility to manufacture wet glued laminated beams using ungraded laminations of Norway spruce side boards was investigated with very promising results. In the project presented in this report, the performance of the wet glued beams has been further investigated and developed as regards grading of side board laminations, bond line properties and lamination finger jointing. The possibility to use scanning equipment for measurement of fibre angles and prediction of strength and stiffness of boards and beams has been studied and the procedures for technical approval and CE marking have been probed into. Studies concerning market and economy for the beams and layouts for a pilot plant and a full capacity plant, respectively, for production of such beams have also been carried out. The possibility to grade side boards in the wet state using axial dynamic excitation was investigated with a positive result. From such excitation, a board’s stiffness (modulus of elasticity) could be determined. Accordingly, grading criteria regarding axial stiffness, and knot size, was applied to grade side board laminations into two classes; outer and inner laminations. Strength and stiffness tests of beams manufactured from such graded laminations showed that the beams actually could challenge first rate glulam and LVL products available on the market. Regarding beam shape and shape stability, cross section cupping may need further attention. Even if this deformation was small, it was still visible to the naked eye. The problem could probably be overcome if the beams are dried to a moisture content of 12-14% before planing. Results of shear tests show that green glued bond lines can fulfil strength requirements for glulam. However, delamination requirements for service class 3 (outdoors) were not fully met. From small scale tensile testing of glued bonds it was concluded that green glued bonds with high density wood have the same tensile strength and fracture ...