Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mogne, Thierry Le

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reductioncitations

Places of action

Chart of shared publication
Cavoret, Jérôme
1 / 5 shared
Ville, Fabrice
1 / 8 shared
Dassenoy, Fabrice
1 / 4 shared
Diaby, Moussa
1 / 2 shared
Rabaso, Pierre
1 / 2 shared
Afanasiev, Pavel
1 / 4 shared
Vacher, Béatrice
1 / 2 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Cavoret, Jérôme
  • Ville, Fabrice
  • Dassenoy, Fabrice
  • Diaby, Moussa
  • Rabaso, Pierre
  • Afanasiev, Pavel
  • Vacher, Béatrice
OrganizationsLocationPeople

article

Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction

  • Cavoret, Jérôme
  • Ville, Fabrice
  • Dassenoy, Fabrice
  • Diaby, Moussa
  • Rabaso, Pierre
  • Afanasiev, Pavel
  • Vacher, Béatrice
  • Mogne, Thierry Le
Abstract

The use of Inorganic Fullerene-like (IF) nanoparticles in lubricants has proved extremely effective to reduce friction and wear under severe boundary lubrication conditions, It has furthermore been suggested that the synthesis of smaller nanoparticles containing many structural defects would benefit friction and wear reduction, as they would penetrate and exfoliate more easily in the contact, leading to the quick formation of homogeneous tribofilms. In this study, four different types of IF-MoS2 were synthesized so as to be able to differentiate the influence of both the size and the morphology of the nanoparticles on their tribological behavior. Pure-sliding, reciprocating tribological testing of these four types of nanoparticles revealed their excellent friction-reducing properties in severe boundary lubrication, with splash lubrication taking place for a high number of cycles. High wear reduction was also obtained and confirmed using optical profilometry. Although the nanoparticle structure was found to have an influence on their effectiveness in time, all the nanoparticles tested - regardless of size or crystallinity - were found to achieve the same performances as long as proper oil recirculation took place, ensuring a continuous feeding of the contact in nanoparticles. The formation of MoS2 tribofilms on the wear surfaces was confirmed using XPS analyses and observed on FIB cross sections, and their nature was discussed in the light of the associated tribological results. As the size and morphology of the IF-MoS2 did not affect their performance in the range studied, their friction reducing properties were compared to those of bulk h-MoS2 tested in the same conditions. The benefits of using spherical nanoparticles such as IF-MoS2 was clearly shown. (C) 2014 Elsevier B.V. All rights reserved.

Topics
  • nanoparticle
  • surface
  • x-ray photoelectron spectroscopy
  • defect
  • crystallinity
  • profilometry