Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leitner, Walter

  • Google
  • 2
  • 17
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Towards carbon-neutral and clean combustion with hydroformylated Fischer-Tropsch (HyFiT) fuelscitations
  • 2019Industry-oriented sample preparation of 6xxx and 5xxx aluminum alloys in laboratory scalecitations

Places of action

Chart of shared publication
Muthyala, Paul
1 / 1 shared
Pischinger, Stefan
1 / 1 shared
Vorholt, Andreas
1 / 1 shared
Schmitz, Katharina
1 / 2 shared
Voelker, Simon
1 / 1 shared
Neumann, Marcel
1 / 1 shared
Kossioris, Theodoros
1 / 1 shared
Bardow, André
1 / 2 shared
Bachmann, Marvin
1 / 1 shared
Mueller, Leonard
1 / 2 shared
Lehrheuer, Bastian
1 / 1 shared
Hofmeister, Marius
1 / 1 shared
Groll, Niklas
1 / 1 shared
Stemper, Lukas
1 / 12 shared
Ebner, Thomas
1 / 8 shared
Schmid, Florian
1 / 8 shared
Pogatscher, Stefan
1 / 61 shared
Chart of publication period
2023
2019

Co-Authors (by relevance)

  • Muthyala, Paul
  • Pischinger, Stefan
  • Vorholt, Andreas
  • Schmitz, Katharina
  • Voelker, Simon
  • Neumann, Marcel
  • Kossioris, Theodoros
  • Bardow, André
  • Bachmann, Marvin
  • Mueller, Leonard
  • Lehrheuer, Bastian
  • Hofmeister, Marius
  • Groll, Niklas
  • Stemper, Lukas
  • Ebner, Thomas
  • Schmid, Florian
  • Pogatscher, Stefan
OrganizationsLocationPeople

document

Industry-oriented sample preparation of 6xxx and 5xxx aluminum alloys in laboratory scale

  • Stemper, Lukas
  • Ebner, Thomas
  • Schmid, Florian
  • Pogatscher, Stefan
  • Leitner, Walter
Abstract

<p>The production of industrial-near alloy samples is of major importance, as soon as laboratory tests need to be compared with industrial processes. Therefore, production facilities must be closely oriented to existing melting techniques, heat treatments and processing parameters. For this purpose, a master alloy is produced in a resistance heated furnace in 10 kg batches under different cooling parameters. For further alloy variation, small samples (100 g) can be remolten, alloyed and cast under vacuum or protective gas respectively using an induction heated furnace. The further process consists of an appropriate heat treatment and surface finish. Thereafter, rolling parameters can be varied in a small-scale rolling stand. Considering the final annealing step, various air-circulated furnaces and tempering baths are available. Testing these samples, it has been shown that comparisons considering grain size and microstructure as well as mechanical properties are valid.</p>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • grain size
  • aluminium
  • annealing
  • tempering