Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Matsagar, Vasant

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Evaluation of low carbon mortar matrices reinforced with natural fibrescitations

Places of action

Chart of shared publication
Perepechay, Anna
1 / 2 shared
Dyer, Thomas Daniel
1 / 14 shared
Spadea, Saverio
1 / 20 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Perepechay, Anna
  • Dyer, Thomas Daniel
  • Spadea, Saverio
OrganizationsLocationPeople

document

Evaluation of low carbon mortar matrices reinforced with natural fibres

  • Perepechay, Anna
  • Dyer, Thomas Daniel
  • Matsagar, Vasant
  • Spadea, Saverio
Abstract

<p>In recent years, significant steps have been taken towards the design of sustainable cementitious-based materials, mainly by promoting industrial and/or natural by-products in partial substitution of Portland Cement (PC). The design of concrete mix should be, however, tailored to the specificity of the application, which may incorporate additional features aimed at reducing the impact of construction material on the environment. Recent research by the authors has focused on the valorisation of natural fibres obtained from crop varieties wildly available in India, which are generally fated to incineration and are therefore cause of considerable pollution. The overall aim is to use waste fibres combined with mortar to improve the mechanical and durability properties of both fibres and cement-based material. An experimental investigation has focused on the influence of partial cement replacement on the mechanical properties of different mixes in compliance with EN 196 standard. These are preliminary tests on mortar matrices aimed at designing sustainable concrete. Binary and ternary mixes were obtained by varying the content of ground granulated blast-furnace slag (GGBS) and/or-limestone powder (LS) in substitution of PC. Additional mixes were obtained by adding 1% of ‘Ambadi’ fibres weight (as a percentage of binder weight) to the same mix composition. Flexural and compressive tests were performed on mortar prisms to evaluate the peak strengths of all materials and the post-peak performance in flexure of fibre reinforced specimens. The study has revealed that mortar mixes with up to 90% replacement of PC can be successfully used in the construction industry to achieve mechanical performances sufficient for structural application. Such mixes are also demonstrated to be compatible with plant-based natural fibres, which have the potential to contribute to crack restraint and durability of concrete positively.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • crack
  • strength
  • cement
  • durability
  • laser sintering