People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dyer, Thomas Daniel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Fungal colonization and biomineralization for bioprotection of concretecitations
- 2021Potential of Weathered Blast Furnace Slag for use as an Addition in Concretecitations
- 2021Evaluation of low carbon mortar matrices reinforced with natural fibres
- 2019Pozzolanas and pozzolanic materialscitations
- 2017Influence of cement type on resistance to attack from two carboxylic acidscitations
- 2013Interaction of phenolic brownfield contaminants with hydrating Portland cementcitations
- 2011Characterisation of two chemical compounds formed between hydrated portland cement and benzene-1,2-diol (pyrocatechol)citations
- 2011Hydration chemistry of sewage sludge ash used as a cement componentcitations
- 2009Exposure of Portland cement to multiple trace metal loadingscitations
- 2006Influence of solid solutions on chloride leaching from wasteformscitations
- 2004Hydration reactions of cement combinations containing vitrified incinerator fly ashcitations
- 2004Maximising opportunities for recycling glass
- 2003Use of refuse-derived fuel ash as a cement component in mortar
- 2001Chemical reactions of glass cullet used as a cement componentcitations
Places of action
Organizations | Location | People |
---|
document
Evaluation of low carbon mortar matrices reinforced with natural fibres
Abstract
<p>In recent years, significant steps have been taken towards the design of sustainable cementitious-based materials, mainly by promoting industrial and/or natural by-products in partial substitution of Portland Cement (PC). The design of concrete mix should be, however, tailored to the specificity of the application, which may incorporate additional features aimed at reducing the impact of construction material on the environment. Recent research by the authors has focused on the valorisation of natural fibres obtained from crop varieties wildly available in India, which are generally fated to incineration and are therefore cause of considerable pollution. The overall aim is to use waste fibres combined with mortar to improve the mechanical and durability properties of both fibres and cement-based material. An experimental investigation has focused on the influence of partial cement replacement on the mechanical properties of different mixes in compliance with EN 196 standard. These are preliminary tests on mortar matrices aimed at designing sustainable concrete. Binary and ternary mixes were obtained by varying the content of ground granulated blast-furnace slag (GGBS) and/or-limestone powder (LS) in substitution of PC. Additional mixes were obtained by adding 1% of ‘Ambadi’ fibres weight (as a percentage of binder weight) to the same mix composition. Flexural and compressive tests were performed on mortar prisms to evaluate the peak strengths of all materials and the post-peak performance in flexure of fibre reinforced specimens. The study has revealed that mortar mixes with up to 90% replacement of PC can be successfully used in the construction industry to achieve mechanical performances sufficient for structural application. Such mixes are also demonstrated to be compatible with plant-based natural fibres, which have the potential to contribute to crack restraint and durability of concrete positively.</p>