People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Li
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Large-area epitaxial growth of InAs nanowires and thin films on hexagonal boron nitride by metal organic chemical vapor depositioncitations
- 2023First-Ply Failure Analysis of Helicoidal/Bouligand Bio-Inspired Laminated Composite Platescitations
- 2022Tuning the crystal structure and optical properties of selective area grown InGaAs nanowirescitations
- 2022Effective Passivation of InGaAs Nanowires for Telecommunication Wavelength Optoelectronicscitations
- 2021Tuning the crystal structure and optical properties of selective area grown InGaAs nanowires
- 2021Multivariate genomic analysis and optimal contributions selection predicts high genetic gains in cooking time, iron, zinc, and grain yield in common beans in East Africacitations
- 2021Passivation of InP solar cells using large area hexagonal-BN layerscitations
- 2019Damage analysis of a perfect broadband absorber by a femtosecond lasercitations
- 2018Tungsten Refractory Plasmonic Material for High Fluence Bowtie Nano-antenna
- 2018Impurity Gettering by Diffusion-doped Polysilicon Passivating Contacts for Silicon Solar Cellscitations
- 2017Imaging of doped iron pnictides across a structural phase transition
- 2017Void evolution and porosity under arsenic ion irradiation in GaAs1-xSbx alloyscitations
- 2016Cluster analysis of acoustic emission signals for 2D and 3D woven carbon fiber/epoxy compositescitations
- 2016Shear-Coupled Grain Growth and Texture Development in a Nanocrystalline Ni-Fe Alloy during Cold Rollingcitations
- 2015Identification of the damage in woven composites based on acoustic emission cluster analysis
- 2014Encapsulated <scp>PDMS</scp> Microspheres with Reactive Handlescitations
- 2013On the mechanical effects of a nanocrystallisation treatment for ZrO2 oxide films growing on a zirconium alloycitations
- 2013Reversible loss of bernal stacking during the deformation of few-layer graphene in nanocompositescitations
- 2012Experimental and numerical study of the effects of a nanocrystallisation treatment on high-temperature oxidation of a zirconium alloycitations
- 2011Work softening in nanocrystalline materials induced by dislocation annihilationcitations
- 2011Ultrafiltration by gyroid nanoporous polymer membranescitations
- 2010Hydrophilic nanoporous materials
- 2008Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loadingcitations
- 2007Anion selectivity in zwitterionic amide-funtionalised metal salt extractantscitations
Places of action
Organizations | Location | People |
---|
article
Tuning the crystal structure and optical properties of selective area grown InGaAs nanowires
Abstract
Catalyst-free InGaAs nanowires grown by selective area epitaxy are promising building blocks for future optoelectronic devices in the infrared spectral region. Despite progress, the role of pattern geometry and growth parameters on the composition, microstructure, and optical properties of InGaAs nanowires is still unresolved. Here, we present an optimised growth parameter window to achieve highly uniform In1−xGaxAs nanowire arrays on GaAs (111)B substrate over an extensive range of Ga concentrations, from 0.1 to 0.91, by selective-area metal-organic vapor-phase epitaxy. We observe that the Ga content always increases with decreasing In/(Ga+In) precursor ratio and group V flow rate and increasing growth temperature. The increase in Ga content is supported by a blue shift in the photoluminescence peak emission. The geometry of the nanowire arrays also plays an important role in the resulting composition. Notably, increasing the nanowire pitch size from 0.6 to 2 µm in a patterned array shifts the photoluminescence peak emission by up to 120 meV. Irrespective of these growth and geometry parameters, the Ga content determines the crystal structure, resulting in a predominantly wurtzite structure for xGa ≤ 0.3 and a predominantly zinc blende phase for xGa ≥ 0.65. These insights on the factors controlling the composition of InGaAs nanowires grown by a scalable catalyst-free approach provide directions for engineering nanowires as functional components of future optoelectronic devices.