People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kärki, Janne
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2016Corrosion Testing of Thermal Spray Coatings in a Biomass Co-Firing Power Plantcitations
- 2015Oxygen blast furnace with CO 2 capture and storage at an integrated steel mill:Part II: Economic Feasibility in Comparison with Conventional Blast Furnace Highlighting Sensitivitiescitations
- 2015Oxygen blast furnace with CO2 capture and storage at an integrated steel millcitations
- 2015Corrigendum to "Oxygen blast furnace with CO2 capture and storage at an integrated steel mill
- 2015Thermal spray coatings for high-temperature corrosion protection in biomass co-fired boilerscitations
- 2015Corrigendum to "Oxygen blast furnace with CO 2 capture and storage at an integrated steel mill:Part II: Economic feasibility in comparison with conventional blast furnace highlighting sensitivities" [Int. J. Greenh. Gas Control 32 (2015) 189-196]
- 2015Mass, energy and material balances of SRF production process:Part 3: Solid recovered fuel produced from municipal solid wastecitations
- 2015Mass, energy and material balances of SRF production processcitations
- 2014Costs and potential of carbon capture and storage at an integrated steel mill:Technology screening and development pathway
- 2014Costs and potential of carbon capture and storage at an integrated steel mill
- 2014Oxygen blast furnace with CO 2 capture and storage at an integrated steel mill-Part I:Technical concept analysiscitations
- 2014Oxygen blast furnace with CO2 capture and storage at an integrated steel mill-Part Icitations
- 2014Mass, energy and material balances of SRF production process.:Part 1: SRF produced from commercial and industrial wastecitations
- 2014Thermal spray coatings for high temperature corrosion protection in biomass co-fired boilers
- 2014Thermal spray coatings for high temperature corrosion protection of advanced power plants -performance and feasibility studies in a biomass-fired boiler
- 2014Mass, energy and material balances of SRF production process.:Part 2: SRF produced from construction and demolition wastecitations
- 2014Mass, energy and material balances of SRF production process.citations
- 2013Costs and potential of carbon capture and storage at an integrated steel millcitations
- 2013Coating solutions against high temperature corrosion - performance validation and feasibility at biomass fired boilers
- 2005Mitigation of Formation of Chlorine Rich Deposits Affecting on Superheater Corrosion under Co-Combustion Conditions (CORBI)
- 2004The advantages of co-firong peat and wood in improving boiler operation and performance
- 2004Fuel blend characteristics and performance of co-fired fluidised bed boilers
- 2004Puupolttoaineiden vaikutus voimalaitoksen käytettävyyteen - PUUT24
- 2003Variation, effect and control of forest chip quality in CHP
- 2003High performance and low emissions - optimisation of multifuel-based bioenergy production
- 2003The effect of wood fuels on power plant availability
- 2003The importance of fuel control in improving the availability of biomass-fired power plants
- 2002Puupolttoaineiden vaikutus voimalaitoksen käytettävyyteen
- 2002Optimisation of multifuel-based bioenergy production
Places of action
Organizations | Location | People |
---|
conferencepaper
The importance of fuel control in improving the availability of biomass-fired power plants
Abstract
Combustion of biomass-based fuels and wastes may cause unexpected problems in power plant operation. In addition to operational disturbances in fuel pre-treatment and feeding systems, several observations have shown that alkali metal compounds in biomass cause hot corrosion of heat transfer surfaces - especially at low sulphur conditions. The behaviour of biomass fuel is influenced during combustion by existence of other fuels. It has been noticed in the previous studies that even small concentration of chlorine in logging residue chips will result in harmful formation of alkali and chlorine compounds on boiler heat transfer surfaces. This could be prevented by co-firing sulphur-containing fuel like peat. In this case vaporised alkali metals of wood ash are bound in sulphur, the amount of alkali chlorides in deposits is reduced or these are not formed at all, and chlorine is released as HCl into flue gases. The formation of alkali and chlorine compounds in biomass combustion and their contribution to boiler fouling and corrosion hasbeen monitored by specific temperature controlled probes both at VTT Processes' test facilities and at full-scale power plant boilers. These studies have been supplemented by examining the availability and operation history of selected Finnish and Swedish wood-fired power plants. As a result of these studies, and in co-operation with steam boiler manufacturers and operators, VTT Processes has developed new methods for defining the optimum share of biomass fuels in different fuel blends and for improving power plant availability.