People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kärki, Janne
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2016Corrosion Testing of Thermal Spray Coatings in a Biomass Co-Firing Power Plantcitations
- 2015Oxygen blast furnace with CO 2 capture and storage at an integrated steel mill:Part II: Economic Feasibility in Comparison with Conventional Blast Furnace Highlighting Sensitivitiescitations
- 2015Oxygen blast furnace with CO2 capture and storage at an integrated steel millcitations
- 2015Corrigendum to "Oxygen blast furnace with CO2 capture and storage at an integrated steel mill
- 2015Thermal spray coatings for high-temperature corrosion protection in biomass co-fired boilerscitations
- 2015Corrigendum to "Oxygen blast furnace with CO 2 capture and storage at an integrated steel mill:Part II: Economic feasibility in comparison with conventional blast furnace highlighting sensitivities" [Int. J. Greenh. Gas Control 32 (2015) 189-196]
- 2015Mass, energy and material balances of SRF production process:Part 3: Solid recovered fuel produced from municipal solid wastecitations
- 2015Mass, energy and material balances of SRF production processcitations
- 2014Costs and potential of carbon capture and storage at an integrated steel mill:Technology screening and development pathway
- 2014Costs and potential of carbon capture and storage at an integrated steel mill
- 2014Oxygen blast furnace with CO 2 capture and storage at an integrated steel mill-Part I:Technical concept analysiscitations
- 2014Oxygen blast furnace with CO2 capture and storage at an integrated steel mill-Part Icitations
- 2014Mass, energy and material balances of SRF production process.:Part 1: SRF produced from commercial and industrial wastecitations
- 2014Thermal spray coatings for high temperature corrosion protection in biomass co-fired boilers
- 2014Thermal spray coatings for high temperature corrosion protection of advanced power plants -performance and feasibility studies in a biomass-fired boiler
- 2014Mass, energy and material balances of SRF production process.:Part 2: SRF produced from construction and demolition wastecitations
- 2014Mass, energy and material balances of SRF production process.citations
- 2013Costs and potential of carbon capture and storage at an integrated steel millcitations
- 2013Coating solutions against high temperature corrosion - performance validation and feasibility at biomass fired boilers
- 2005Mitigation of Formation of Chlorine Rich Deposits Affecting on Superheater Corrosion under Co-Combustion Conditions (CORBI)
- 2004The advantages of co-firong peat and wood in improving boiler operation and performance
- 2004Fuel blend characteristics and performance of co-fired fluidised bed boilers
- 2004Puupolttoaineiden vaikutus voimalaitoksen käytettävyyteen - PUUT24
- 2003Variation, effect and control of forest chip quality in CHP
- 2003High performance and low emissions - optimisation of multifuel-based bioenergy production
- 2003The effect of wood fuels on power plant availability
- 2003The importance of fuel control in improving the availability of biomass-fired power plants
- 2002Puupolttoaineiden vaikutus voimalaitoksen käytettävyyteen
- 2002Optimisation of multifuel-based bioenergy production
Places of action
Organizations | Location | People |
---|
document
Puupolttoaineiden vaikutus voimalaitoksen käytettävyyteen
Abstract
The objective of this research is to determine criticalproperties of wood fuels inrespect of power plant availability, to determine theoptimal conditions for reducingdetriments, and to study the effect of storing andprocessing of woodfuels on the boiler operation. Both, the CFB and BFBtechnologies are studied.The project started in December 2000 and it will be endedin March 2003. Expertsof the Energy Production research field at VTT Processescarry out themajority of the research activities. Experts in theresearch field of Mineral Processing,located in Outokumpu, participate in analytics, and theresearch field ofMaterial and Manufacturing Technology of VTT IndustrialSystems in Otaniemiparticipates in the research on material effects. SystemTechnology Laboratoryof Oulu University, under the supervision of ProfessorUrpo Kortela, is responsiblefor the power plant automation and for the research onboiler control technology.Co-operation related to the analytics of heat transfersurface depositionand corrosion with the EU's JRC has continued asestablished in the Combustionof Forest Chips -project but mainly in a so-colled"CORBI"-EU-project. Additionally,VTT co-operates with Swedish Värmeforsk Ab in the form ofinformationexchange on experiences of wood fuel utilization inSwedish power plants.The following companies participate in the project:Etelä-Savon Energia Oy,Foster Wheeler Energia Oy, Kvaerner Pulping Oy, Simpelepasteboard factoryof M-Real Oyj and Värmeforsk Ab (Sweden).