People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kärki, Janne
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2016Corrosion Testing of Thermal Spray Coatings in a Biomass Co-Firing Power Plantcitations
- 2015Oxygen blast furnace with CO 2 capture and storage at an integrated steel mill:Part II: Economic Feasibility in Comparison with Conventional Blast Furnace Highlighting Sensitivitiescitations
- 2015Oxygen blast furnace with CO2 capture and storage at an integrated steel millcitations
- 2015Corrigendum to "Oxygen blast furnace with CO2 capture and storage at an integrated steel mill
- 2015Thermal spray coatings for high-temperature corrosion protection in biomass co-fired boilerscitations
- 2015Corrigendum to "Oxygen blast furnace with CO 2 capture and storage at an integrated steel mill:Part II: Economic feasibility in comparison with conventional blast furnace highlighting sensitivities" [Int. J. Greenh. Gas Control 32 (2015) 189-196]
- 2015Mass, energy and material balances of SRF production process:Part 3: Solid recovered fuel produced from municipal solid wastecitations
- 2015Mass, energy and material balances of SRF production processcitations
- 2014Costs and potential of carbon capture and storage at an integrated steel mill:Technology screening and development pathway
- 2014Costs and potential of carbon capture and storage at an integrated steel mill
- 2014Oxygen blast furnace with CO 2 capture and storage at an integrated steel mill-Part I:Technical concept analysiscitations
- 2014Oxygen blast furnace with CO2 capture and storage at an integrated steel mill-Part Icitations
- 2014Mass, energy and material balances of SRF production process.:Part 1: SRF produced from commercial and industrial wastecitations
- 2014Thermal spray coatings for high temperature corrosion protection in biomass co-fired boilers
- 2014Thermal spray coatings for high temperature corrosion protection of advanced power plants -performance and feasibility studies in a biomass-fired boiler
- 2014Mass, energy and material balances of SRF production process.:Part 2: SRF produced from construction and demolition wastecitations
- 2014Mass, energy and material balances of SRF production process.citations
- 2013Costs and potential of carbon capture and storage at an integrated steel millcitations
- 2013Coating solutions against high temperature corrosion - performance validation and feasibility at biomass fired boilers
- 2005Mitigation of Formation of Chlorine Rich Deposits Affecting on Superheater Corrosion under Co-Combustion Conditions (CORBI)
- 2004The advantages of co-firong peat and wood in improving boiler operation and performance
- 2004Fuel blend characteristics and performance of co-fired fluidised bed boilers
- 2004Puupolttoaineiden vaikutus voimalaitoksen käytettävyyteen - PUUT24
- 2003Variation, effect and control of forest chip quality in CHP
- 2003High performance and low emissions - optimisation of multifuel-based bioenergy production
- 2003The effect of wood fuels on power plant availability
- 2003The importance of fuel control in improving the availability of biomass-fired power plants
- 2002Puupolttoaineiden vaikutus voimalaitoksen käytettävyyteen
- 2002Optimisation of multifuel-based bioenergy production
Places of action
Organizations | Location | People |
---|
document
Variation, effect and control of forest chip quality in CHP
Abstract
There is a growing interest in utilising renewable fuels in multifuel applications. Main reasons for this are environmental; reduction of CO<sub>2</sub> emissions as well as NO<sub>x</sub> and SO<sub>2</sub> emissions. The cofiring, defined assimultaneous combustion of different fuels in the same boiler, thereforeprovides an alternative to achieve lower emission in energy and powerproduction. However, the utilisation of solid biofuels and wastes sets newdemands for process control and boiler design, as well as for combustiontechnologies, fuel blend control and fuel handling systems. The ash behaviourin combustion of biomass-based fuel affects highly on it's combustioncharacteristics compared to peat and coal. Combustion and cofiring propertiesof fuels have been studied both in pilot scale testing at VTT and inindustrial-scale power plant boilers. The formation of alkaline and chlorinecompounds in biomass combustion and their effect on boiler fouling andcorrosion have been monitored by temperature controlled deposit formation andmaterial monitoring probes. Deposit formation monitoring at full-scale boilersprovides unique information on the rate of deposit formation, the effect ofsoot blowing and consequent changes in heat transfer. Additionally, the datafrom deposit formation monitoring has been shown to correlate with boilerperformance, which gives basis for studying the interrelation of: fuel blendcharacteristics - deposit formation - boiler performance. By the aid of theaforementioned means, optimum share of biomass fuel in different fuel blendscan be defined.