Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shen, C.

  • Google
  • 4
  • 24
  • 345

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Comparing depth-dependent curing radiant exposure and time of curing of regular and flow bulk-fill composites.3citations
  • 2017Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals276citations
  • 2010Shearing of γ́ precipitates by a (112) dislocation ribbons in Ni-base superalloys66citations
  • 2008Phase field modelling of stacking fault shear in nickel base superalloyscitations

Places of action

Chart of shared publication
Reis, Alessanrss
1 / 3 shared
Ip, Tenorio
1 / 1 shared
Gbr, Mello
1 / 1 shared
Jf, Roulet
1 / 3 shared
Murali, B.
1 / 2 shared
El Tall, O.
1 / 1 shared
Yin, J.
1 / 4 shared
Pan, J.
1 / 6 shared
Ouellette, O.
1 / 2 shared
Peng, W.
1 / 4 shared
-T., Ho K.
1 / 1 shared
M., Bakr O.
1 / 1 shared
-H., He J.
1 / 1 shared
S., Ooi B.
1 / 1 shared
Miao, X.
1 / 1 shared
De Bastiani, M.
1 / 21 shared
F., Mohammed O.
1 / 3 shared
Alarousu, E.
1 / 2 shared
Sargent, E.
1 / 1 shared
Rae, C. M. F.
2 / 13 shared
Vorontsov, Vassili A.
2 / 28 shared
Wang, Y.
2 / 134 shared
Dye, D.
2 / 58 shared
Voskoboinikov, R.
1 / 1 shared
Chart of publication period
2017
2010
2008

Co-Authors (by relevance)

  • Reis, Alessanrss
  • Ip, Tenorio
  • Gbr, Mello
  • Jf, Roulet
  • Murali, B.
  • El Tall, O.
  • Yin, J.
  • Pan, J.
  • Ouellette, O.
  • Peng, W.
  • -T., Ho K.
  • M., Bakr O.
  • -H., He J.
  • S., Ooi B.
  • Miao, X.
  • De Bastiani, M.
  • F., Mohammed O.
  • Alarousu, E.
  • Sargent, E.
  • Rae, C. M. F.
  • Vorontsov, Vassili A.
  • Wang, Y.
  • Dye, D.
  • Voskoboinikov, R.
OrganizationsLocationPeople

document

Phase field modelling of stacking fault shear in nickel base superalloys

  • Voskoboinikov, R.
  • Rae, C. M. F.
  • Vorontsov, Vassili A.
  • Wang, Y.
  • Shen, C.
  • Dye, D.
Abstract

Stacking fault shear (SFS) is the dominant creep deformation mechanism in Nibase superalloys subjected to primary creep conditions (750°C, 800MPa). TEM observations1 have shown that the source of plastic strain is the shearing of they' precipitates by dislocation ribbons with overall burgers vector of a< 112 >. SFS can only occur when they matrix is sufficiently saturated with a/2 < 110> dislocations. These matrix dislocations are unable to cut the y' because of the high energy APB they leave in their wake. By combining into a ribbon, shearing of the precipitates is facilitated by formation of intrinsic and extrinsic stacking faults (SISF and SESF).

Topics
  • impedance spectroscopy
  • polymer
  • nickel
  • phase
  • transmission electron microscopy
  • dislocation
  • precipitate
  • deformation mechanism
  • creep
  • superalloy
  • stacking fault