People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zghal, Jihed
Laboratoire Angevin de Mécanique, Procédés et InnovAtion
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Elaboration et caractérisation d'un matériau à gradient de fonction
- 2022Physicochemical and Antibacterial Properties of Bioactive Retrograde Filling Materialscitations
- 2021Analysis of the delayed damage model for three one-dimensional loading scenariicitations
- 2020Physicochemical and Antibacterial Properties of Novel, Premixed Calcium Silicate-Based Sealer Compared to Powder–Liquid Bioceramic Sealercitations
- 2017High-resolution elastic analysis of thin-ply composite laminatescitations
- 2017High-resolution elastic analysis of thin-ply composite laminatescitations
- 2017High-resolution elastic analysis of thin-ply composite laminatescitations
- 2016A crystal plasticity based approach for the modelling of high cycle fatigue damage in metallic materialscitations
- 2016High cycle fatigue behavior of a HC360LA high-strength low-alloy steel : damage, plasticity and associated dissipative phenomena
- 2015Development of a polycrystalline approach for the modelling of high cycle fatigue damage: Application to a HSLA steel
Places of action
Organizations | Location | People |
---|
document
Development of a polycrystalline approach for the modelling of high cycle fatigue damage: Application to a HSLA steel
Abstract
International audience ; For many metallic alloys, fatigue crack initiation is governed by the development of a localized plastic activity at the grain scale. Because of the irreversible nature of plasticity, a significant proportion of the total work is dissipated into heat during a cyclic loading. As a consequence, one may expect some correlation between heat dissipation and high cycle fatigue damage as both phenomena are closely related.The purpose of the present work is to study such correlation for a ferritic high strength low alloyed steel subjected to various cyclic loading conditions. For several uniaxial fatigue tests carried out under different load ratios and stress levels, an experimental dataset consisting of stress, strain and temperature measurements is used to estimate the evolution of the amount of dissipated energy. A clear correlation between dissipated energy and the number of cycles to failure is observed.