People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gallino, Isabella
Technische Universität Berlin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024A Novel Method for Preparation of Al–Ni Reactive Coatings by Incorporation of Ni Nanoparticles into an Al Matrix Fabricated by Electrodeposition in AlCl<sub>3</sub>:1‐Eethyl‐3‐Methylimidazolium Chloride (1.5:1) Ionic Liquid Containing Ni Nanoparticles
- 2024Thermodynamics, kinetics and crystallization behavior of the Pd31Ni42S27 bulk glass forming alloy
- 2024On the interplay of liquid-like and stress-driven dynamics in a metallic glass former observed by temperature scanning XPCS
- 2024Thermodynamics, kinetics and crystallization behavior of the Pd$_{31}$Ni$_{42}$S$_{27}$ bulk glass forming alloycitations
- 2023Denser glasses relax faster: Enhanced atomic mobility and anomalous particle displacement under in-situ high pressure compression of metallic glassescitations
- 2023Characterization of plastic-metal hybrid composites joined by means of reactive Al/Ni multilayers: evaluation of occurring thermal regime
- 2023Size-dependent vitrification in metallic glasses
- 2022On the devitrification of Cu–Zr–Al alloys: Solving the apparent contradiction between polymorphic liquid-liquid transition and phase separationcitations
- 2022On the formation of nanocrystalline aluminides during high pressure torsion of Al/Ni alternating foils and post-processing multilayer reactioncitations
- 2022Solid state joining of a cold rolled Zr-based bulk metallic glass to a wrought aluminum alloy by power ultrasonicscitations
- 2022Selective laser melting of a Fe-Si-Cr-B-C-based complex-shaped amorphous soft-magnetic electric motor rotor with record dimensionscitations
- 2022Selective laser melting of a Fe-Si-Cr-B-C-based complex-shaped amorphous soft-magnetic electric motor rotor with record dimensionscitations
- 2022Effect of composition and thermal history on deformation behavior and cluster connections in model bulk metallic glassescitations
- 2021Phase transformation and characterization of 3D reactive microstructures in nanoscale Al/Ni multilayerscitations
- 2021On the thermodynamics and its connection to structure in the Pt-Pd-Cu-Ni-P bulk metallic glass forming systemcitations
- 2021Ultrafast formation of single phase B2 AlCoCrFeNi high entropy alloy films by reactive Ni/Al multilayers as heat sourcecitations
- 2021Influence of Processing Route on the Surface Reactivity of Cu47Ti33Zr11Ni6Sn2Si1 Metallic Glass
- 2021Phase Transformation and Characterization of 3D Reactive Microstructures in Nanoscale Al/Ni Multilayerscitations
- 2020Vitrification decoupling from α-relaxation in a metallic glasscitations
- 2020Ultrafast scanning calorimetry of newly developed Au-Ga bulk metallic glassescitations
- 2019The role of Ga addition on the thermodynamics, kinetics, and tarnishing properties of the Au-Ag-Pd-Cu-Si bulk metallic glass forming systemcitations
- 2018Hierarchical aging pathways and reversible fragile-to-strong transition upon annealing of a metallic glass formercitations
- 2017On the high glass-forming ability of Pt-Cu-Ni/Co-P-based liquidscitations
- 2015Beta Relaxation and Low Temperature Aging of a Gold Based Bulk Metallic Glass
- 2015Linking Structure to Fragility in Bulk Metallic Glass-Forming Liquidscitations
- 2009Metallurgy Beyond Ironcitations
Places of action
Organizations | Location | People |
---|
article
Influence of Processing Route on the Surface Reactivity of Cu47Ti33Zr11Ni6Sn2Si1 Metallic Glass
Abstract
Recently, laser additive manufacturing (AM) techniques have emerged as a promising alternative for the synthesis of bulk metallic glasses (BMGs) with massively increased freedom in part size and geometry, thus extending their economic applicability of this material class. Nevertheless, porosity, compositional inhomogeneity, and crystallization display themselves to be the emerging challenges for this processing route. The impact of these “defects” on the surface reactivity and susceptibility to corrosion was seldom investigated but is critical for the further development of 3D-printed BMGs. This work compares the surface reactivity of cast and additively manufactured (via laser powder bed fusion—LPBF) Cu47Ti33Zr11Ni6Sn2Si1 metallic glass after 21 days of immersion in a corrosive HCl solution. The cast material presents lower oxygen content, homogeneous chemical distribution of the main elements, and the surface remains unaffected after the corrosion experimentation based on vertical scanning interferometry (VSI) investigation. On the contrary, the LPBF material presents a considerably higher reactivity seen through crack propagations on the surface. It exhibits higher oxygen content, heterogeneous chemical distribution, and presence of defects (porosity and cracks) generated during the manufacturing process.