People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stiens, Johan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Fracture monitoring of textile reinforced cementitious sandwich panels using non-contact millimeter wave spectrometry
- 2023Elastic and electromagnetic monitoring of TRC sandwich panels in fracture under four-point bendingcitations
- 2022Fully Blind Electromagnetic Characterization of Deep Sub-Wavelength (λ /100) Dielectric Slabs With Low Bandwidth Differential Transient Radar Technique at 10 GHzcitations
- 2022Linking the elastic, electromagnetic and thermal properties of fresh cementcitations
- 2022Bending Monitoring of TRC Sandwich Beams by Means of Multimodal NDTs
- 2022Multimodal NDT monitoring of Textile Reinforced Cementitious Composite Sandwich beams in bending
- 2022A Novel Approach to Non-Destructive Rubber Vulcanization Monitoring by the Transient Radar Methodcitations
- 2021NDT inspection on TRC and precast concrete sandwich panels: A reviewcitations
- 2019Growth mechanism of novelty scaly CNFs@ZnO nanofibers structure and its photoluminescence property
Places of action
Organizations | Location | People |
---|
document
Multimodal NDT monitoring of Textile Reinforced Cementitious Composite Sandwich beams in bending
Abstract
Textile Reinforced Cementitious (TRC) sandwich technology generate lightweight elements with satisfactory loadbearing capacity. The non-corrosive nature of the textiles allows for concrete cover reductions, and therefore energy savings and lower carbon emissions when compared to a steel reinforced concrete sandwich, or steel reinforced concrete elements. However, due to its composite nature, TRC sandwich elements have a complex damage behavior, and bad interlaminar bond, might cause premature debonding, and drastically reduce the loadbearing capacity of the composite. Non-Destructive Testing (NDT) Techniques allow to inspect and monitor structural elements without affecting their behavior. In this study, MMW Spectrometry, Acoustic Emission, and Digital Image Correlation are used simultaneously to monitor quasi static four-point bending tests of TRC sandwich panels, and similar elements with an artificially destroyed interlaminar bond.