People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Suzuki, Takenobu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2013On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses ; Analogie mezi fotoluminescencí a změnou typu vodivosti v Bi- a Pb-dotovaných sklechcitations
- 2013On the analogy between photoluminescence and carrier-type reversal in Bi-and Pb-doped glassescitations
- 2010Transparent silicate glass-ceramics embedding Ni-doped nanocrystals
Places of action
Organizations | Location | People |
---|
booksection
Transparent silicate glass-ceramics embedding Ni-doped nanocrystals
Abstract
Recent progress in the development of transparent silicate glass-ceramics embedding Ni-doped nanocrystals as broadband gain media is reviewed. At first, optical properties such as the peak positions, wavelengths lifetimes and quantum efficiencies of the near-infrared emission of nickel-doped oxide crystals are overviewed. The quantum efficiencies of the near-infrared emission of nickel-doped LiGa<sub>5</sub>O<sub>8</sub> and MgGa<sub>2</sub>O<sub>4</sub> were as high as ~1 even at room temperature. Thus these materials are promising candidate crystals to be precipitated in glass-ceramics. Crystallization process of Li<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-NiO (LGSN) glass was investigated in detail. Transparent glass-ceramics in which only Ni<sup>2+</sup>:LiGa<sub>5</sub>O<sub>8</sub> was contained as crystalline phases have been successfully prepared from the glass by heat-treatment. The glass-ceramics exhibited broad near-infrared emission around 1300 nm and the quantum efficiency was about 10 %. The figure of merit as laser transition of the emission was comparable to that of rare-earth doped glasses used in optical fiber amplifiers. LGSN transparent glass-ceramics is a promising candidate material for broadband optical fiber amplifiers and tunable lasers.<br/>