Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Anderson, Ross

  • Google
  • 3
  • 10
  • 3

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Bienzymatic Generation of Interpenetrating Polymer Networked Engineered Living Materials with Shape Changing Properties3citations
  • 2022Effect of Gas Composition on Hydrate Growth Rate and Agglomeration Tendencycitations
  • 2005Evaluation of latex adhesives containing hydrophobic cores and poly(vinyl acetate) shells: potential to reduce poly(vinyl acetate) glueline creepcitations

Places of action

Chart of shared publication
Perriman, Adam Willis
1 / 17 shared
Klemperer, R. George
1 / 1 shared
Tohidi, Bahman
1 / 6 shared
Aminnaji, Morteza
1 / 1 shared
Mcintosh, Charles
1 / 2 shared
Lomax, Terry
1 / 1 shared
Russell, Gregory
1 / 1 shared
Grigsby, Warren
1 / 22 shared
Ferguson, Chris
1 / 1 shared
Franich, Robert
1 / 2 shared
Chart of publication period
2023
2022
2005

Co-Authors (by relevance)

  • Perriman, Adam Willis
  • Klemperer, R. George
  • Tohidi, Bahman
  • Aminnaji, Morteza
  • Mcintosh, Charles
  • Lomax, Terry
  • Russell, Gregory
  • Grigsby, Warren
  • Ferguson, Chris
  • Franich, Robert
OrganizationsLocationPeople

document

Effect of Gas Composition on Hydrate Growth Rate and Agglomeration Tendency

  • Anderson, Ross
  • Tohidi, Bahman
  • Aminnaji, Morteza
Abstract

While the past decade has seen significant advances in kinetic hydrate inhibitor (KHI) evaluation, gas hydrate AA (anti-agglomeration/agglomerant) / natural transportability testing remains notably disparate by comparison, suffering from a lack of standardisation and persistent gaps in knowledge regarding the generic fundamentals of hydrate plugging. This problem is in a significant part responsible for the more limited use of AA based approaches as a hydrate mitigation strategy – be that by chemical treatment or utilising natural transportability properties – when compared to complete hydrate inhibition by KHI / THI (thermodynamic inhibitor) injection.<br/><br/>Historically, AA studies have primarily focused on the liquid hydrocarbon and aqueous phases, with oil composition (notably the presence of natural surfactants), water cut and salinity seen as the main controlling factors. In contrast, much less attention has been paid to the gas and hydrate phases, particularly the compositions of these. <br/><br/>Following delineation of the hydrate phase boundary, either by measurement or prediction, the gas is generally only considered in terms of total moles consumed for the purposes of calculating the fraction of solid hydrate formed. The hydrate phase is treated in a similar manner, being assumed as a single structure of largely fixed composition (‘s-II natural gas hydrates’…‘s-I methane hydrates’), with the fraction present viewed as the dominant controlling factor in plugging. <br/><br/>However, recent work in an ongoing industry funded JIP (joint industry project) demonstrates that both gas and hydrate composition play a major role in slurry transportability, controlling the rate of hydrate growth, plugging tendency, and LDHI performance (both AAs and KHIs).<br/><br/>As described in a companion article, in both single (e.g. methane) and multi-component gas systems, rather than just one hydrate phase forming, a number of hydrates of differing composition/structure nucleate and grow at variable (by up to one order of magnitude) rates as subcooling is increased, including a largely unknown low pressure s II methane hydrate. The relatively rapid growth rates of some phases means that hydrates formed initially may not be the most thermodynamically stable, making subsequent solid-solid and/or complete dissociation-reformation transitions a common feature. Crucially, different gases show variable plugging tendencies as a function of subcooling for identical test conditions, and it is proposed that this is structural and/or structure change related, e.g. through melting/regrowth cementation mechanisms. These structure related plugging processes also give rise to novel ‘un-agglomeration’ behaviour, where ‘plugs’ disintegrate to flowing slurries at fixed PT, sometimes well inside the hydrate region, for both gas-water and gas-liquid hydrocarbon-water systems.

Topics
  • impedance spectroscopy
  • phase
  • laser emission spectroscopy
  • forming
  • atomic absorpion spectrometry
  • surfactant
  • phase boundary