People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roellig, Thomas L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
NIRCam Y-Dwarfs
Abstract
The nature of the coolest brown dwarfs - their formation, their atmospheres, including their composition, temperature, pressure structures, and the nature of any clouds that may be present is of particular interest for a number of reasons. Since they form where the Initial Mass Function is rolling off they provide important information about the star formation process. The fact that they appear to have different binarity fractions compared to higher mass stars also indicates that their formation process is different. Objects with masses in the range 5-10 MJup represent evolutionary end-state analogues for the exoplanets found in a younger, higher-temperature state orbiting nearby stars. Anchoring the model atmospheres for low mass objects will increase our understanding of these objects and perhaps lead to predictions of observable differences (e.g. metallicity) between objects formed via cloud fragmentation (low mass end of star formation) vs. those formed via accretion within a protoplanetary disk....