People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Overgaard Christensen, Christian
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Decision analytic approach for the reclassification of concrete bridges by using elastic limit information from proof loadingcitations
- 2021Activated Ductile CFRP NSMR Strengtheningcitations
- 2020Ductile response controlled EW CFRP anchor systemcitations
- 2019Quantification of digital image correlation applicability related to in-situ proof load testing of bridges
- 2019Quantification of digital image correlation applicability related to in-situ proof load testing of bridges
- 2019Experimental and numerical Studies on the shared Activation Anchoring of NSMR CFRP applied to RC Beams
- 2018DIC-monitoring of full-scale concrete bridge using high-resolution wide-angle lens camera
Places of action
Organizations | Location | People |
---|
document
Quantification of digital image correlation applicability related to in-situ proof load testing of bridges
Abstract
Advanced crack monitoring is crucial for high precision response- and threshold evaluation when performing proof- and diagnostic load tests on existing concrete structures. Mostly, crack monitoring techniques involve one monitoring method, which provide thresholds with regard to stop criteria and characterization information. In the ongoing Danish bridge testing research program, it is hypothesized that several independent monitoring techniques are needed to reduce uncertainties related to crack detection and categorization. A number of novel monitoring methods are used in the research project. A special focus is however dedicated to twodimensional digital image correlation (2D-DIC) and acoustic emission (AE). This paper presents initial research concerning evaluations related to digital image correlation based on subcomponent beam tests performed in the DTU CasMat laboratory facility. The tested beams were prefabricated as TT-elements with a length of 6.4 m and cut into two T-beam elements. The test matrix consisted of ten beams strengthened with carbon fiber reinforced polymer (CFRP) in different configurations with and without post-tensioning of the CFRP, thus resulting in different crack initiation behavior. The investigations in this paper include: (1) time of crack detection compared to visual detection, (2) time of crack detection compared to time of crack width threshold values, and (3) crack width evaluation using 2D-DIC strain correction for out-of-plane deflection. The results show that cracks can be detected prior to both visual detection and significant stiffness change. After detection, crack development can be monitored for crack width stop criteria. Crack widths can also be successfully monitored for surfaces subjected to out-ofplane movement using a geometric correction method. The methodology is hypothesized to be of significant importance in future testing of full-scale concrete slab bridges in the Danish bridge testing project.