Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Habicher, Magdalena

  • Google
  • 2
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Ermüdungsverhalten von 3D-gedrucktem endlosfaserverstärktem Polylactidcitations
  • 2022Effect of die temperature on the fatigue behaviour of PLA produced by means of fused filament fabricationcitations

Places of action

Chart of shared publication
Petersmann, Sandra
2 / 13 shared
Lammer, Herfried
2 / 4 shared
Primetzhofer, Andreas
2 / 6 shared
Arbeiter, Florian Josef
2 / 40 shared
Leßlhumer, Jürgen
2 / 4 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Petersmann, Sandra
  • Lammer, Herfried
  • Primetzhofer, Andreas
  • Arbeiter, Florian Josef
  • Leßlhumer, Jürgen
OrganizationsLocationPeople

document

Ermüdungsverhalten von 3D-gedrucktem endlosfaserverstärktem Polylactid

  • Habicher, Magdalena
  • Petersmann, Sandra
  • Lammer, Herfried
  • Primetzhofer, Andreas
  • Arbeiter, Florian Josef
  • Leßlhumer, Jürgen
Abstract

Additive manufacturing (AM) facilitates the production of industrial applications with different materials and complex structures. Fused filament fabrication is the most commonly used AM process when considering thermoplastic matrix materials. During this process, filament strands are deposited onto a built-platform layer-by-layer. The layer-wise deposition induces defects and anisotropy in the printed parts. The diffusion depth between adjacent strands significantly influences the resulting mechanical properties. In recent years, FFF is also performed with continuous fibre reinforced filaments. A currently highly researched fibre-matrix combination represents continuous flax fibre reinforced polylactide. This composite is used in this study as the interest in the commercial use of natural fibre-based composites is steadily increasing.<br/>Since components for industrial applications often have to withstand several loading and unloading cycles, the fatigue behaviour of the material needs to be analysed in advance. In order to be able to describe components using numerical methods later on, the material is tested in the direction (UD0) and perpendicular to (UD90) the strands/fibres with tension (R=0.1) and alternating (R=-1) loads. The stress levels are set in a way to reach cycles to failure in the range of 10³ to 106. The loading frequency is selected in order to avoid excessive hysteretic heating. The evaluated fatigue curves for the two loading modes and strand/fibre orientations were compared. <br/>

Topics
  • Deposition
  • impedance spectroscopy
  • fatigue
  • composite
  • defect
  • thermoplastic
  • additive manufacturing
  • field-flow fractionation