Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Batistella, Marcos

  • Google
  • 22
  • 60
  • 211

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (22/22 displayed)

  • 2024Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranes2citations
  • 20233D printing of fire-retardant biopolymerscitations
  • 2023Thermal conductivity of glass/talc filled Polyamide 12 as function of tapping levelcitations
  • 2022The influence of montmorillonite on the flame‐retarding properties of intumescent bio‐based PLA composites7citations
  • 2022Viscoelastic behaviour of novel thermoplastic elastomer blends for fused filament fabrication (FFF)citations
  • 2022Flame-Retarding Properties of Injected and 3D-Printed Intumescent Bio-Based PLA Composites: The Influence of Brønsted and Lewis Acidity of Montmorillonite13citations
  • 2022Flame-Retarding Properties of Injected and 3D-Printed Intumescent Bio-Based PLA Composites: The Influence of Brønsted and Lewis Acidity of Montmorillonite13citations
  • 2022Influence of the microstructure on the electrical properties of 3D printed PLA/PCL/GNP compositescitations
  • 2022Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Technique44citations
  • 2022The influence of montmorillonite on the flame‐retarding properties of intumescent bio‐based <scp>PLA</scp> composites7citations
  • 2022Influence of Polymer Processing on the Double Electrical Percolation Threshold in PLA/PCL/GNP Nanocomposites7citations
  • 2022Laser sintering of coated polyamide 12: a new way to improve flammability2citations
  • 2022Polymer processing influence on the double electrical percolation threshold in PLA/PCL/GNP nanocompositescitations
  • 2021Modification of poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) via free‐radical grafting and its photo‐crosslinking2citations
  • 2021Functionalization of cellulosic fibers with a kaolinite-TiO2 nano-hybrid composite via a solvothermal process for flame retardant applications35citations
  • 2021Fused filament fabrication (fff) of electrically conductive pla/pcl/graphene nanoplatelets (gnp) bionanocompositescitations
  • 2021Fused filament fabrication (fff) of electrically conductive pla/pcl/graphene nanoplatelets (gnp) bionanocompositescitations
  • 2021Modification of poly(styrene‐<i>b</i>‐(ethylene‐<i>co</i>‐butylene)‐<i>b</i>‐styrene) via free‐radical grafting and its photo‐crosslinking2citations
  • 2020Kinetic and thermodynamic parameters guiding the localization of regioselectively modified kaolin platelets into a PS/PA6 co-continuous blend7citations
  • 2019PA 12 nanocomposites and flame retardants compositions processed through selective laser sinteringcitations
  • 2016Fire retardancy of polypropylene/kaolinite composites30citations
  • 2014Fire retardancy of ethylene vinyl acetate/ultrafine kaolinite composites40citations

Places of action

Chart of shared publication
Lopez-Cuesta, José-Marie
9 / 67 shared
De Oliveira Emmer, Emily
1 / 1 shared
Hascoet, Sebastien
1 / 1 shared
Le Bret, Emmanuel
1 / 1 shared
Masson, Arthur
1 / 1 shared
Decante, Benoit
1 / 1 shared
Ciobotaru, Vlad
1 / 1 shared
Clari, Louis
1 / 1 shared
Rasselet, Damien
1 / 3 shared
Lopez-Cuesta, J.
10 / 42 shared
Seigler, Dylan
1 / 1 shared
Gilblas, Rémi
1 / 17 shared
Le Maoult, Yannick
1 / 40 shared
Regazzi, Arnaud
9 / 23 shared
Schmidt, Fabrice
1 / 55 shared
Nascimento, Marco Antonio Chaer
2 / 2 shared
Martins, Raíssa Carvalho
2 / 2 shared
Ribeiro, Simone Pereira Da Silva
1 / 1 shared
Nascimento, Regina Sandra Veiga
2 / 3 shared
Harlay, Agnès
3 / 3 shared
Robin, Jean-Jacques
1 / 11 shared
Quantin, Jeanchristophe
5 / 10 shared
Blanquer, Sébastien
2 / 12 shared
Rezende, Michelle Jakeline Cunha
1 / 2 shared
Pereira Da Silva Ribeiro, Simone
1 / 2 shared
Veiga Nascimento, Regina Sandra
1 / 2 shared
Chaer Nascimento, Marco Antonio
1 / 2 shared
Martins, Raissa
1 / 1 shared
Cunha Rezende, Michelle Jakeline
1 / 1 shared
Pucci, Monica Francesca
6 / 36 shared
Masarra, Nour-Alhoda
4 / 4 shared
Ravel, Romain
2 / 4 shared
Hage, Roland El
2 / 3 shared
Pucci, Monica, Francesca
2 / 5 shared
Hage, Roland, El
1 / 1 shared
Nascimento, Regina Sandra
1 / 1 shared
Martins, Raíssa
1 / 2 shared
El Hage, Roland
2 / 7 shared
Quantin, Jean-Christophe
1 / 4 shared
Kadri, Ouassila
1 / 1 shared
Bordeaux, David
1 / 1 shared
Ayme, Florence
1 / 1 shared
Quantin, J.-C
1 / 2 shared
El Hage, R.
1 / 4 shared
Robin, Jeanjacques
2 / 4 shared
Brossier, Thomas
2 / 9 shared
Morand, Nicolas
2 / 2 shared
Ulson De Souza, Selene Maria De Arruda Guelli
1 / 1 shared
De Oliveira, Carlos Rafael Silva
1 / 2 shared
De Souza, Antônio Augusto Ulson
1 / 2 shared
Masarra, N. A.
2 / 2 shared
Lopezcuesta, José
1 / 1 shared
Blanquer, Sebastien
1 / 3 shared
Taguet, Aurélie
1 / 17 shared
Otazaghine, Belkacem
3 / 32 shared
Bordeaux, D.
1 / 1 shared
Kadri, O.
1 / 1 shared
Petter, Carlos
2 / 2 shared
Sonnier, Rodolphe
2 / 58 shared
Caro-Bretelle, Anne-Sophie
1 / 4 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2016
2014

Co-Authors (by relevance)

  • Lopez-Cuesta, José-Marie
  • De Oliveira Emmer, Emily
  • Hascoet, Sebastien
  • Le Bret, Emmanuel
  • Masson, Arthur
  • Decante, Benoit
  • Ciobotaru, Vlad
  • Clari, Louis
  • Rasselet, Damien
  • Lopez-Cuesta, J.
  • Seigler, Dylan
  • Gilblas, Rémi
  • Le Maoult, Yannick
  • Regazzi, Arnaud
  • Schmidt, Fabrice
  • Nascimento, Marco Antonio Chaer
  • Martins, Raíssa Carvalho
  • Ribeiro, Simone Pereira Da Silva
  • Nascimento, Regina Sandra Veiga
  • Harlay, Agnès
  • Robin, Jean-Jacques
  • Quantin, Jeanchristophe
  • Blanquer, Sébastien
  • Rezende, Michelle Jakeline Cunha
  • Pereira Da Silva Ribeiro, Simone
  • Veiga Nascimento, Regina Sandra
  • Chaer Nascimento, Marco Antonio
  • Martins, Raissa
  • Cunha Rezende, Michelle Jakeline
  • Pucci, Monica Francesca
  • Masarra, Nour-Alhoda
  • Ravel, Romain
  • Hage, Roland El
  • Pucci, Monica, Francesca
  • Hage, Roland, El
  • Nascimento, Regina Sandra
  • Martins, Raíssa
  • El Hage, Roland
  • Quantin, Jean-Christophe
  • Kadri, Ouassila
  • Bordeaux, David
  • Ayme, Florence
  • Quantin, J.-C
  • El Hage, R.
  • Robin, Jeanjacques
  • Brossier, Thomas
  • Morand, Nicolas
  • Ulson De Souza, Selene Maria De Arruda Guelli
  • De Oliveira, Carlos Rafael Silva
  • De Souza, Antônio Augusto Ulson
  • Masarra, N. A.
  • Lopezcuesta, José
  • Blanquer, Sebastien
  • Taguet, Aurélie
  • Otazaghine, Belkacem
  • Bordeaux, D.
  • Kadri, O.
  • Petter, Carlos
  • Sonnier, Rodolphe
  • Caro-Bretelle, Anne-Sophie
OrganizationsLocationPeople

document

Influence of the microstructure on the electrical properties of 3D printed PLA/PCL/GNP composites

  • Batistella, Marcos
  • Lopez-Cuesta, J.
  • Pucci, Monica Francesca
  • Masarra, Nour-Alhoda
  • Ravel, Romain
  • Quantin, Jeanchristophe
  • Hage, Roland El
Abstract

Conductive fillers such as graphene are able to increase the electrical conductivity in polymer compositesystems. Beyond a certain concentration called the electrical percolation threshold, graphene particles canform interconnected 3D percolated network and thus leading to a sudden rise in the conductivity of thecomposites [1].In this context, this work aims to highlight for the first time the differences in terms of the microstructureof polymer blend composite systems based on polylactic acid (PLA 2003D, Nature Works) andpolycaprolactone (PCL Capa TM6800 , Perstorp) that are filled with 10 wt.% of graphene nanoplatelets(GNP-Grade M5, XG Sciences) and their influence on the electrical properties. The polymer compositeswereprepared using the melt blending technique via a mini twin-screw extruder. The polymer proportionswere varied (the percentage of PLA was increased from 30 wt.% to 80 wt.% in the polymer total weightpercentage). 3D printing and compression moulding techniques were used to manufacture the samples forthe conductivitytests and the microstructural analysis by scanning electron microscopy (SEM).The SEM image (Figure 1.a) is related to PLA30/PCL70/10 wt.% GNP compression moulded composite inwhich the PLA nodules (brighter phase) are dispersed in the PCL (darker phase) that contains all the GNPs.The same sea-island morphology was obatined for the 3D printed sample. And from the electricalconductivity measurement tests, this formulation showed inferior electrical performance as compared toPLA60/PCL40/10 wt.% GNP composite (Figure 1.b). The latter possesses superior conductivity due to thepresence of a co-continuous structure of PLA and PCL phases in addition to the selective localization of thegraphene in the PCL phase. This phenomenon is related to the existence of a double percolation thresholdthat exists in the case of immiscible polymer blend composites which contain filler whose preference is toone polymer phase rather than the other [2]. References [1] Marsden, A.J.; Papageorgiou, D.G.; Valles, C.; Liscio, A.; Palermo, V.; Bissett, M.A.; Young, R.J.; Kinloch, I.A.; Electrical percolation in graphene-polymer composites. 2D Materials 2018, 5, 1-34. [2] Zhang, K.; Yu, H.O.; Shi, Y.D.; Chen, Y.F.; Zeng, J.B.; Guo, J.; Wang, B.; Guo, Z.;Wang, M.; Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(L-lactide)/poly(ε-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. Journal of Materials Chemistry C 2017, 5, 2807-2817.

Topics
  • nanocomposite
  • impedance spectroscopy
  • microstructure
  • Carbon
  • scanning electron microscopy
  • nanotube
  • melt
  • electrical conductivity
  • polymer blend
  • percolated