Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Quantin, Jeanchristophe

  • Google
  • 10
  • 26
  • 108

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2022Viscoelastic behaviour of novel thermoplastic elastomer blends for fused filament fabrication (FFF)citations
  • 2022Influence of the microstructure on the electrical properties of 3D printed PLA/PCL/GNP compositescitations
  • 2022Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Technique44citations
  • 2021Lignin as a Major Component of an Intumescent Fire Retardant System for Biopolyestercitations
  • 2021Fused filament fabrication (fff) of electrically conductive pla/pcl/graphene nanoplatelets (gnp) bionanocompositescitations
  • 2021Fused filament fabrication (fff) of electrically conductive pla/pcl/graphene nanoplatelets (gnp) bionanocompositescitations
  • 2020Biocomposites ignifugés pour la fabrication additivecitations
  • 2011Mechanical behaviour at large strain of polycarbonate nanocomposites during uniaxial tensile test33citations
  • 2004Study of interphase in glass fiber-reinforced poly(butylene terephthalate) composites26citations
  • 2002Factors influencing viscoelastic properties of a poly (butylene terephthalate) reinforced with short glass fibers5citations

Places of action

Chart of shared publication
Batistella, Marcos
5 / 22 shared
Harlay, Agnès
1 / 3 shared
Lopez-Cuesta, J.
6 / 42 shared
Regazzi, Arnaud
6 / 23 shared
Robin, Jean-Jacques
1 / 11 shared
Blanquer, Sébastien
1 / 12 shared
Pucci, Monica Francesca
5 / 36 shared
Masarra, Nour-Alhoda
2 / 4 shared
Ravel, Romain
1 / 4 shared
Hage, Roland El
2 / 3 shared
Lopez-Cuesta, José-Marie
2 / 67 shared
Pucci, Monica, Francesca
1 / 5 shared
Hage, Roland, El
1 / 1 shared
Carretier, Valentin
2 / 4 shared
Lacoste, Clément
2 / 8 shared
El Hage, Roland
1 / 7 shared
Masarra, N. A.
2 / 2 shared
Christmann, A.
1 / 1 shared
Caro-Bretelle, A. S.
1 / 22 shared
Ienny, Patrick
1 / 45 shared
Gasca, J.-P.
1 / 1 shared
Bozec, M.
1 / 1 shared
Crespy, A.
2 / 7 shared
Arpin, M.
1 / 1 shared
Bergeret, Anne
2 / 34 shared
Beaudoin, O.
1 / 1 shared
Chart of publication period
2022
2021
2020
2011
2004
2002

Co-Authors (by relevance)

  • Batistella, Marcos
  • Harlay, Agnès
  • Lopez-Cuesta, J.
  • Regazzi, Arnaud
  • Robin, Jean-Jacques
  • Blanquer, Sébastien
  • Pucci, Monica Francesca
  • Masarra, Nour-Alhoda
  • Ravel, Romain
  • Hage, Roland El
  • Lopez-Cuesta, José-Marie
  • Pucci, Monica, Francesca
  • Hage, Roland, El
  • Carretier, Valentin
  • Lacoste, Clément
  • El Hage, Roland
  • Masarra, N. A.
  • Christmann, A.
  • Caro-Bretelle, A. S.
  • Ienny, Patrick
  • Gasca, J.-P.
  • Bozec, M.
  • Crespy, A.
  • Arpin, M.
  • Bergeret, Anne
  • Beaudoin, O.
OrganizationsLocationPeople

document

Influence of the microstructure on the electrical properties of 3D printed PLA/PCL/GNP composites

  • Batistella, Marcos
  • Lopez-Cuesta, J.
  • Pucci, Monica Francesca
  • Masarra, Nour-Alhoda
  • Ravel, Romain
  • Quantin, Jeanchristophe
  • Hage, Roland El
Abstract

Conductive fillers such as graphene are able to increase the electrical conductivity in polymer compositesystems. Beyond a certain concentration called the electrical percolation threshold, graphene particles canform interconnected 3D percolated network and thus leading to a sudden rise in the conductivity of thecomposites [1].In this context, this work aims to highlight for the first time the differences in terms of the microstructureof polymer blend composite systems based on polylactic acid (PLA 2003D, Nature Works) andpolycaprolactone (PCL Capa TM6800 , Perstorp) that are filled with 10 wt.% of graphene nanoplatelets(GNP-Grade M5, XG Sciences) and their influence on the electrical properties. The polymer compositeswereprepared using the melt blending technique via a mini twin-screw extruder. The polymer proportionswere varied (the percentage of PLA was increased from 30 wt.% to 80 wt.% in the polymer total weightpercentage). 3D printing and compression moulding techniques were used to manufacture the samples forthe conductivitytests and the microstructural analysis by scanning electron microscopy (SEM).The SEM image (Figure 1.a) is related to PLA30/PCL70/10 wt.% GNP compression moulded composite inwhich the PLA nodules (brighter phase) are dispersed in the PCL (darker phase) that contains all the GNPs.The same sea-island morphology was obatined for the 3D printed sample. And from the electricalconductivity measurement tests, this formulation showed inferior electrical performance as compared toPLA60/PCL40/10 wt.% GNP composite (Figure 1.b). The latter possesses superior conductivity due to thepresence of a co-continuous structure of PLA and PCL phases in addition to the selective localization of thegraphene in the PCL phase. This phenomenon is related to the existence of a double percolation thresholdthat exists in the case of immiscible polymer blend composites which contain filler whose preference is toone polymer phase rather than the other [2]. References [1] Marsden, A.J.; Papageorgiou, D.G.; Valles, C.; Liscio, A.; Palermo, V.; Bissett, M.A.; Young, R.J.; Kinloch, I.A.; Electrical percolation in graphene-polymer composites. 2D Materials 2018, 5, 1-34. [2] Zhang, K.; Yu, H.O.; Shi, Y.D.; Chen, Y.F.; Zeng, J.B.; Guo, J.; Wang, B.; Guo, Z.;Wang, M.; Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(L-lactide)/poly(ε-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. Journal of Materials Chemistry C 2017, 5, 2807-2817.

Topics
  • nanocomposite
  • impedance spectroscopy
  • microstructure
  • Carbon
  • scanning electron microscopy
  • nanotube
  • melt
  • electrical conductivity
  • polymer blend
  • percolated