People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Suryanto, Benny
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Probabilistic approach to the sustainability assessment of reinforced concrete structures in conditions of climate changecitations
- 2023Features of Immittance Spectra as Performance Indicators for Cement-Based Concretescitations
- 2021The electro-mechanical tensile properties of an engineered cementitious compositecitations
- 2021Low Carbon Recycled Aggregate Concrete
- 2021Cover-zone protective qualities under corrosive environmentscitations
- 2020Moisture movement within concrete exposed to simulated hot arid/semi-arid conditionscitations
- 2020Assessing the performance and transport properties of concrete using electrical property measurementscitations
- 2019Conduction, relaxation and complex impedance studies on Portland cement mortars during freezing and thawingcitations
- 2019In-Situ Conductivity Measurements to Monitor Moisture Profiles of Concrete in Hot Climates
- 2018Impedance measurements on an engineered cementitious composite: a critical evaluation of testing protocolscitations
- 2018Performance assessment of reinforced concrete after long-term exposure to a marine environmentcitations
- 2018Transient moisture profiles in cover-zone concrete during water absorptioncitations
- 2017Characterization of fly-ash using electrochemical impedance spectroscopycitations
- 2017A Testing Methodology for Performance-Based Specificationcitations
- 2017Frequency- and Time- Domain Dependency of Electrical Properties of Cement-Based Materials During Early Hydrationcitations
- 2016Monitoring micro-crack healing in an engineered cementitious composite using the environmental scanning electron microscopecitations
- 2016Chloride ingress into marine exposed concrete: A comparison of empirical- and physically- based modelscitations
- 2016Electrochemical immittance spectroscopy applied to a hybrid PVA/steel fiber engineered cementitious compositecitations
- 2015Two-point concrete resistivity measurementscitations
Places of action
Organizations | Location | People |
---|
document
Low Carbon Recycled Aggregate Concrete
Abstract
<p>Recycled coarse aggregate from construction demolition waste offers a promising and sustainable solution to overcome challenges facing the construction industry, in relation to the increasing landfill areas, decreasing natural aggregate reserves, and increasing environmental impact of concrete production. Previous studies have shown that recycled aggregate concretes (RAC) are, however, more susceptible to deterioration. This paper presents an experimental investigation to improve the performance of concretes manufactured with locally produced recycled coarse aggregate in the UAE. More specifically, it aims to investigate the potential of incorporating ground granulated blast-furnace slag (GGBS) and silica fume (SF) in RACs, and their influence on key engineering properties of concrete. It is shown that partial replacement of Portland cement with GGBS and SF is effective to reduce the resistance of RAC to chloride ion penetration (hence durability), and lower the drying shrinkage and CO2 emissions, with minimal influence on the long-term mechanical properties. A reduction of approximately 40% in CO2 emissions was found in a concrete mix with combined replacement of recycled and waste materials.</p>