People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gao, Mei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions
- 2024The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditionscitations
- 2023Versatile Carbon Electrodes for Record Small, Large, Rigid, and Flexible Perovskite Solar Cells
- 2022Vacuum-free and solvent-free deposition of electrodes for roll-to-roll fabricated perovskite solar cellscitations
- 2022Effect of out-gassing from polymeric encapsulant materials on the lifetime of perovskite solar cellscitations
- 2021Can laminated carbon challenge gold? Towards universal, scalable and low-cost carbon electrodes for perovskite solar cellscitations
- 2020Develop Roll-to-Roll Compatible Process for Highly Efficient Thin Film Solar Cells (ICFPOE 2019)
- 2020Develop Roll-to-Roll Compatible Process for Highly Efficient Thin Film Solar Cells (ICFPOE 2019)
- 2020Develop Roll-to-Roll Compatible Process for Highly Efficient Thin Film Solar Cells (ICFPOE 2019)
- 2020Improving the Stability of Ambient-Processed SnO2-Based, Perovskite Solar Cells by UV-Treatment of the Sub-Cellscitations
- 2020Improving the Stability of Ambient processed, SnO2-Based, Perovskite Solar Cells by the UV-treatment of Sub-Cellscitations
- 2019Scalable, Stable, and Reproducible Roll-to-roll Processed Perovskite Solar Cells
- 2018Beyond fullerenes: Indacenodithienol-based organic charge transport layer towards upscaling of perovskite solar cellscitations
- 2018Reliability improvement of perovskite solar cells from roll-to-roll (R2R) continuous process
- 2018Manufacturing cost and market potential analysis of demonstrated roll-to roll perovskite photovoltaic cell processescitations
- 2017ITO-free flexible perovskite solar cells based on roll-to-roll, slot die coated silver nanowire electrodescitations
- 2017Printing-friendly sequential deposition via intra-additive approach for roll-to-roll production of perovskite solar cellscitations
- 2016Development of a high performance donor-acceptor conjugated polymer – synergy in materials and device optimizationcitations
- 2014Tailored donor-acceptor polymers with an A-D1-A-D2 structure: Controlling intermolecular interactions to enable enhanced polymer photovoltaic devicescitations
- 2014Organic Solar Cells Using a High-Molecular-Weight Benzodithiophene–Benzothiadiazole Copolymer with an Efficiency of 9.4%
Places of action
Organizations | Location | People |
---|
document
Develop Roll-to-Roll Compatible Process for Highly Efficient Thin Film Solar Cells (ICFPOE 2019)
Abstract
In order to bridge the significant efficiency gap between devices fabricated by lab-scale spin coating and scalable deposition methods, and to realize a swift translation from research to commercial scales, industrially compatible processing methods must be used during developmental stages of research. The performances of solution processed thin film solar cells are predominantly determined by the quality of the light absorber layer, which in turn is controlled by the fabrication process. To achieve reliable, pin-hole free, smooth films using a continuous deposition process on a commercially acceptable scale, extraordinary efforts must be dedicated to understanding how the growth process impacts the quality of the printed film, allowing for the identification of key problems and optimisation of the deposition process.In this talk, an overview of our journey from early stage attempts to the current high-TRL technology is presented. The careful optimisation of a range of parameters, including precursor concentration, web speed, solution feeding rate, as well as substrate temperature, was required for the fabrication of high quality films, and will be discussed [1-2] .