People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ibrahim, Mohd Haziman Wan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022The effect of nanosilica incorporation on the mechanical properties of concrete exposed to elevated temperature: a review.citations
- 2021Mechanical Strength of Concrete by Replacement of Sand with Porcelain Waste with Addition of Superplasticizer
- 2021Mechanical properties of coconut shell-based concrete: experimental and optimisation modellingcitations
- 2021CBA Self-compacting Concrete Exposed to Water Curing
- 2020Effects of Coal Bottom Ash as Cementitious Material on Compressive Strength and Chloride Permeability of Concretecitations
- 2020Mechanical performance of concrete incorporating wheat straw ash as partial replacement of cementcitations
- 2020Establishment of Strength Prediction Equation for Concrete Containing Coal Bottom Ash Exposed to Aggressive Environment
- 2020Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins
- 2018Dynamic Mechanical Analysis of Waste Polyethylene Terephthalate Bottlecitations
- 2018A Review on Potential use of Coal Bottom Ash as a Supplementary Cementing Material in Sustainable Concrete Constructioncitations
- 2018Influence of ground coal bottom ash with different grinding time as cement replacement material on the strength of concrete
- 2018Physical and Chemical Properties of Rice Husk Ash Concrete Under Seawatercitations
- 2018Strength Properties of Rice Husk Ash Concrete Under Sodium Sulphate Attackcitations
- 2018Compressive and Flexural Strength of Concrete Containing Palm Oil Biomass Clinker with Hooked-End Steel Fiberscitations
- 2018Evaluate the Current Expressions of Compression Strength and UPV Relationship
- 2015Fresh Properties of Self-Compacting Concrete Integrating Coal Bottom Ash as a Replacement of Fine Aggregatescitations
- 2015Cementitious Materials Usage in Self-Compacting Concrete: A Reviewcitations
- 2015Pullout strength of ring-shaped waste bottle fiber concrete
- 2015The Strength Behavior of Self-Compacting Concrete Incorporating Bottom Ash as Partial Replacement to Fine Aggregatecitations
- 2014A review of microstructure properties of porous concrete pavement incorporating nano silica
Places of action
Organizations | Location | People |
---|
document
Pullout strength of ring-shaped waste bottle fiber concrete
Abstract
Polyethylene Terephthalates (PET) isone of the most plastic containers that are normally beingdiscarded by people, which resulted in environmentalpollution. One of the best ways to reduce theenvironmental pollution is by recycling PET as a ringshapedPET (RPET) fiber in concrete. Therefore, it isappropriate to investigate the RPET fiber in term ofpullout strength of RPET fiber concrete. A rotal of 30cubes for the fiber pullout test were made with threeembedded fiber length sizes, namely l5 mm, 20 mm,and 25 mm. The RPET-10 fiber exhibited the highestpullout load of 103.6% compared with RPET-5 fiber atl5 mm embedded length. This finding shows a similarpattern for 20 mm and 25 mnr ernbedded lengthsRPET-10 fiber obtained 77.2% and l3.7% increases inpullout strength compared with RPET-S flber, at 20 to25 mm embedded lengths. In conclusion. this result forthe pullout load strength is important as new inputs tothe technical properties of RPET FC- during pulloutload test.