People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mangi, Sajjad Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020Effects of Coal Bottom Ash as Cementitious Material on Compressive Strength and Chloride Permeability of Concretecitations
- 2020Establishment of Strength Prediction Equation for Concrete Containing Coal Bottom Ash Exposed to Aggressive Environment
- 2019Coal bottom ash as a sustainable supplementary cementitious material for the concrete exposed to seawatercitations
Places of action
Organizations | Location | People |
---|
article
Establishment of Strength Prediction Equation for Concrete Containing Coal Bottom Ash Exposed to Aggressive Environment
Abstract
Strength prediction of concrete under the aggressive environment requires serious attention for all kind of significant concrete structures. However, concrete built with Ordinary Portland Cement (OPC), when subjected to the aggressive environment tends to deteriorate more rapidly than their projected life. Therefore, supplementary cementitious material (SCM) need to be introduced to enhance the strength performance of concrete. However, prediction of concrete compressive strength is also an important for the safety and quality control of concrete structures. Therefore, this study aims to develop empirical equation for the prediction of compressive strength of coal bottom ash (CBA) concrete exposed to aggressive environment that represents the marine environment. In this study, practically obtained results of compressive strength were compared with the theoretical obtained compressive strength values. The developed modified equation was validated through experimental data compared with ACI 209 and SRPS U.M1.048 standards. Hence, this study proposed a modified empirical equation that could be utilized for the expectation of compressive quality of concrete containing CBA.