People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yankova, Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Modelling the Effect of Residual Stresses on Damage Accumulation Using a Coupled Crystal Plasticity Phase Field Fracture Approach
- 2023Interaction of monoclinic ZrO2 grain boundaries with oxygen vacancies, Sn and Nb - implications for the corrosion of Zr alloy fuel cladding
- 2023Bridging Length Scales Efficiently Through Surrogate Modellingcitations
- 2022Capturing the Temperature Dependence of Cleavage Fracture Toughness in the Ductile-to-Brittle Transition Regime in Ferritic Steels using an Improved Engineering Local Approach
- 2021Incorporation of obstacle hardening into local approach to cleavage fracture to predict temperature effects in the ductile to brittle transition regimecitations
- 2021The Importance of Substrate Grain Orientation on Local Oxide Texture and Corrosion Performance in α-Zr Alloyscitations
- 2019Using local approaches to fracture to quantify the local conditions during the ductile-to-brittle transition in ferritic steels
Places of action
Organizations | Location | People |
---|
article
Capturing the Temperature Dependence of Cleavage Fracture Toughness in the Ductile-to-Brittle Transition Regime in Ferritic Steels using an Improved Engineering Local Approach
Abstract
Ferritic steels, which are typically used for critical reactor components, including reactor pressure vessels (RPV), exhibit a temperature-dependent probability of cleavage fracture, termed ductile-to-brittle transition. The fracture process has been linked to the interaction between matrix plasticity and second-phase particles. Under high-enough loads, a competition exists between cleavage and ductile fracture, which results from particles rupturing to form microcracks or particles decohering to form microvoids, respectively. Currently, there is no sufficiently adequate model that can predict accurately the reduced probability of cleavage with increasing temperature and the associated increase of plastic deformation. In this work, failure probability has been estimated using a local approach to cleavage fracture incorporating the statistics of microcracks. It is shown that changes in the deformation material properties are not enough to capture the significant changes in fracture toughness. Instead, a correction to the fraction of particles converted to eligible for cleavage microcracks, with an exponential dependence on the plastic strains, is proposed. The proposed method is compared with previous corrections that incorporate the plastic strains, and its advantages are demonstrated. The method is developed for the RPV steel 22NiMoCr37 and using experimental data for a standard compact tension C(T) specimen. The proposed approach offers more accurate calculations of cleavage fracture toughness in the ductile-to-brittle transition regime using only a decoupled model, which is attractive for engineering practice.