Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malcher, L.

  • Google
  • 2
  • 4
  • 198

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014An extended GTN model for ductile fracture under high and low stress triaxiality198citations
  • 2011A MICROMECHANICAL CONSTITUTIVE MODEL FOR DUCTILE FRACTURE: NUMERICAL TREATMENT AND CALIBRATION STRATEGYcitations

Places of action

Chart of shared publication
Cesar De Sa, Jmac
1 / 4 shared
Andrade Pires, Fma
1 / 5 shared
De Sa, Jmac
1 / 2 shared
Pires, Fma
1 / 14 shared
Chart of publication period
2014
2011

Co-Authors (by relevance)

  • Cesar De Sa, Jmac
  • Andrade Pires, Fma
  • De Sa, Jmac
  • Pires, Fma
OrganizationsLocationPeople

document

A MICROMECHANICAL CONSTITUTIVE MODEL FOR DUCTILE FRACTURE: NUMERICAL TREATMENT AND CALIBRATION STRATEGY

  • Malcher, L.
  • De Sa, Jmac
  • Pires, Fma
Abstract

This contribution describes the numerical treatment and calibration strategy for a new micromechanical damage model, which employs two internal damage variables. The new micromechanical model is based on Gurson's theory incorporating the void volume fraction as one damage parameter and a shear mechanism, which was formulated considering geometrical and phenomenological aspects, as the second internal damage variable. The first and the second damage variables are coupled in the constitutive formulation in order to affect the hydrostatic stress and deviatoric stress contributions, respectively. Both internal damage variables are independent and, as a consequence, they also require independent nucleation mechanisms for each one in order to trigger the growth contribution. These mechanisms require the determination of material parameters that are obtained through two calibration points: one for high and the other for low stress triaxiality. This is in contrast to other damage models that typically require one calibration point. In the first part of this paper, theoretical aspects of the constitutive formulation are presented and discussed. Then, an implicit numerical integration algorithm is derived, based on the operator split methodology, together with a methodology to perform the calibration of all material parameters. In order to assess the performance of the new model, the "butterfly" specimen was used and the 1045 steel was employed under a wide range of stress triaxiality. The results obtained from the numerical simulations are presented such as: the evolution of both damage parameters, the evolution of the equivalent plastic strain, the reaction versus displacement curve and the contour of the effective damage parameter. From the comparison of the numerical results with experimental evidence, it will be highlighted that the present formulation is able to predict accurately the location of fracture onset and the level of the associated equivalent plastic strain at fracture.

Topics
  • impedance spectroscopy
  • polymer
  • theory
  • simulation
  • steel
  • void