People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shingledecker, John P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2021Development of a Physically-Based Creep Model Incorporating Eta Phase Evolution for Nickel Base Superalloys
- 2014MANAGING OXIDE SCALE EXFOLIATION IN BOILERS WITH TP347H SUPERHEATER TUBES
- 2012The Role of Eta Phase Formation on the Creep Strength and Ductility of INCONEL Alloy 740 t 1023 k (750 Degrees C)citations
- 2011Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers
- 2011STEAM-SIDE OXIDE SCALE EXFOLIATION BEHAVIOR IN SUPERHEATERS AND REHEATERS
- 2010Structure and composition of nanometer-sized nitrides in a creep resistant cast austenitic alloycitations
- 2010Creep-rupture performance of 0.07C-23Cr-45Ni-6W-Ti,Nb austenitic alloy (HR6W) tubes
- 2009Developing New Cast Austenitic Stainless Steels with Improved High-Temperature Creep Resistance
- 2009Microscopic evaluation of creep-fatigue interaction in a nickel-based superalloy
- 2008Creep-Rupture Behavior and Recrystallization in Cold-Bent Boiler Tubing for USC Applications
- 2008EVALUATION OF SPECIFICATION RANGES FOR CREEP STRENGTH ENHANCED FERRITIC STEELS
- 2008MICROSTRUCTURE OF LONG-TERM AGED IN617 NI-BASE SUPERALLOYcitations
- 2008Microstructure Evolution of Alloy 625 Foil and Sheet During Creep at 750<super>o</super>Ccitations
- 2007Creep Strength and Microstructure of Al20-25+Nb Alloy Sheets and Foils for Advanced Microturbine Recurperators
- 2007Developing New Cast Austenitic Stainless Steels with Improved High-Temperature Creep Resistance
- 2007Candidate alloys for cost-effective, high-efficiency, high-temperature compact/foil heat-exchangers
- 2007Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applicationscitations
- 2007THERMAL SHOCK TESTING AND ANALYSIS OF IN617 AND 304H SAMPLES
- 2007Creep Behavior of a New Cast Austenitic Alloycitations
- 2007A SYNCHROTRON DIFFRACTION STUDY OF TRANSFORMATION BEHAVIOUR IN 9 CR STEELS USING SIMULATED WELD HEAT-AFFECTED ZONE CONDITIONS
- 2007Alumina-forming Austenitic Alloys for Advanced Recuperators
- 2007Advanced Pressure Boundary Materials
- 2006Evaluation of the Materials Technology Required for a 760?C Power Steam Boiler
- 2006Advanced Alloys for Compact, High-Efficiency, High-Temperature Heat-Exchangers
- 2006CF8C-Plus: A New High Temperature Austenitic Casting for Advanced Power Systemscitations
- 2006Investigation of a Modified 9Cr-1Mo (P91) Pipe Failure
- 2005Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat-Exchangers
Places of action
Organizations | Location | People |
---|
document
Alumina-forming Austenitic Alloys for Advanced Recuperators
Abstract
Materials selection for thin-walled recuperators has been extensively investigated over the past decade. In the latest generation of recuperated turbine engines, type 347 stainless steel has been replaced by higher alloyed steels and Ni-base chromia-forming alloys. However, high (linear) rates of chromia evaporation in exhaust gas fundamentally limits the oxidation lifetime of these chromia-forming alloys. One solution is to use alumina-forming alloys that are more resistant to this environment. The lower scale growth kinetics and resistance to evaporation in the presence of water vapor suggests an order of magnitude increase in lifetime for alumina-forming alloys. A significant problem with this strategy was the large drop in creep strength with the addition of sufficient Al to form an external alumina scale. However, new Fe-base austenitic compositions have been developed with sufficient strength for this application above 700 C.