People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shingledecker, John P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2021Development of a Physically-Based Creep Model Incorporating Eta Phase Evolution for Nickel Base Superalloys
- 2014MANAGING OXIDE SCALE EXFOLIATION IN BOILERS WITH TP347H SUPERHEATER TUBES
- 2012The Role of Eta Phase Formation on the Creep Strength and Ductility of INCONEL Alloy 740 t 1023 k (750 Degrees C)citations
- 2011Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers
- 2011STEAM-SIDE OXIDE SCALE EXFOLIATION BEHAVIOR IN SUPERHEATERS AND REHEATERS
- 2010Structure and composition of nanometer-sized nitrides in a creep resistant cast austenitic alloycitations
- 2010Creep-rupture performance of 0.07C-23Cr-45Ni-6W-Ti,Nb austenitic alloy (HR6W) tubes
- 2009Developing New Cast Austenitic Stainless Steels with Improved High-Temperature Creep Resistance
- 2009Microscopic evaluation of creep-fatigue interaction in a nickel-based superalloy
- 2008Creep-Rupture Behavior and Recrystallization in Cold-Bent Boiler Tubing for USC Applications
- 2008EVALUATION OF SPECIFICATION RANGES FOR CREEP STRENGTH ENHANCED FERRITIC STEELS
- 2008MICROSTRUCTURE OF LONG-TERM AGED IN617 NI-BASE SUPERALLOYcitations
- 2008Microstructure Evolution of Alloy 625 Foil and Sheet During Creep at 750<super>o</super>Ccitations
- 2007Creep Strength and Microstructure of Al20-25+Nb Alloy Sheets and Foils for Advanced Microturbine Recurperators
- 2007Developing New Cast Austenitic Stainless Steels with Improved High-Temperature Creep Resistance
- 2007Candidate alloys for cost-effective, high-efficiency, high-temperature compact/foil heat-exchangers
- 2007Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applicationscitations
- 2007THERMAL SHOCK TESTING AND ANALYSIS OF IN617 AND 304H SAMPLES
- 2007Creep Behavior of a New Cast Austenitic Alloycitations
- 2007A SYNCHROTRON DIFFRACTION STUDY OF TRANSFORMATION BEHAVIOUR IN 9 CR STEELS USING SIMULATED WELD HEAT-AFFECTED ZONE CONDITIONS
- 2007Alumina-forming Austenitic Alloys for Advanced Recuperators
- 2007Advanced Pressure Boundary Materials
- 2006Evaluation of the Materials Technology Required for a 760?C Power Steam Boiler
- 2006Advanced Alloys for Compact, High-Efficiency, High-Temperature Heat-Exchangers
- 2006CF8C-Plus: A New High Temperature Austenitic Casting for Advanced Power Systemscitations
- 2006Investigation of a Modified 9Cr-1Mo (P91) Pipe Failure
- 2005Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat-Exchangers
Places of action
Organizations | Location | People |
---|
document
Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers
Abstract
Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.