People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gastaldi, Emmanuelle
University of Montpellier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Monitoring the degradation status of biodegradable polymers by assessing thermal properties
- 2023Compostability of certified biodegradable plastics at industrial scale processing conditions
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2022Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocompositescitations
- 2020Multi-faceted migration in food contact polyethylene-based nanocomposite packagingcitations
- 2020How Vine Shoots as Fillers Impact the Biodegradation of PHBV-Based Compositescitations
- 2019How olive pomace can be valorized as fillers to tune the biodegradation of PHBV based compositescitations
- 2019A comparative study of degradation mechanisms of PBSA and PHBV under laboratoryscale composting conditionscitations
- 2019New Insights For The Fragmentation Of Plastics Into Microplastics In The Ocean
- 2019Experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles.citations
- 2018Fast-Biodegrading polymers
- 2018Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and propertiescitations
- 2018Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: Interactions and propertiescitations
- 2018Nanostructured biopolymers obtained from blends by extrusion
- 2018How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageingcitations
- 2017Contribution of nanoclay to the additive partitioning in polymerscitations
- 2016Effect of nanoclay on the transfer properties of immanent additives in food packagescitations
- 2013Water transport mechanisms in wheat gluten based (nano) composite materialscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Protein-Based Nanocomposites for Food Packagingcitations
- 2013Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationshipscitations
- 2013Adhesion properties of wheat-based particlescitations
- 2012Protein/Clay Nano-Biocompositescitations
- 2011Impact of high pressure treatment on the structure of montmorillonitecitations
- 2010Réduction de l'impact de l’utilisation des produits phytosanitaires: Contrôle de la libération dans le sol par un granulé protéique biodégradable nanocomposite
- 2010Synthesis of nanocomposite films from wheat gluten matrix and MMT intercalated with different quaternary ammonium salts by way of hydroalcoholic solvent castingcitations
Places of action
Organizations | Location | People |
---|
document
New Insights For The Fragmentation Of Plastics Into Microplastics In The Ocean
Abstract
Pollution of the ocean by plastic litter has become a major environmental problem resulting from its accumulation in terrestrial and marine environments. When mismanaged, plastics enter the aquatic environment where they undergo degradation and fragmentation into microplastics that are now ubiquitous in all aquatic compartments. In addition to the fact that microplastics are impossible to remove from the marine environment, they are even more damaging than the macro waste. Various studies have shown that microplastics are ingested by many types of marine organisms leading to adverse effects at several levels of the food chain and of the marine ecosystems. It is also suspected that microplastics, that constitute a new habitat for micro-organisms, are vectors for potentially pathogenic bacteria.The fate of polymers in the aquatic environment depends both on abiotic phenomena (UV, mechanical stress), and on biotic ones, due to the colonization of plastics by marine micro-organisms (bacteria, phytoplankton, fungi, etc.). A primary step for bio-degradation is the constitution of a biofilm and reduction of the polymer chain length via exo-enzymes produced by bacteria from the biofilm. Once polymer chains are short enough, they can be assimilated by bacteria. While abiotic phenomena lead to the damage and fragmentation of a polymer by oxidation and hydrolysis mechanisms, creation of structural defects and fracture propagation, it is generally admitted that only biotic phenomena will result into the complete bio-degradation of a polymer, i.e. its conversion into biomass, water and CO2. In the marine environment, many questions remain about the relative kinetics of abiotic and biotic degradation and their respective impact in terms of fragmentation. For instance, several papers have recently reported that the size distribution of particles collected in the ocean between 5mm and a few hundreds of microns, does not seem to correspond to a single-kinetic fragmentation process.The erosion patterns of semi-crystalline polymers have been extensively studied in laboratory under enzymatic or bacterial conditions and various degradation patterns have been observed whose occurrence is mainly linked to the difference in the erosion kinetics between crystalline and amorphous regions. To date, there are much less studies addressing how the evolution of these surface patterns will in turn influence the erosion process, lead to fracture and potential fragments generation.In order to study the enzymatic erosion process, we used the well-known model system PDLLA/proteinase K. Being specifically interested in the role of heterogeneities at the scale of a few nanometers to a few micrometers, we used a polymer of a given chemical composition (PDLLA, 1.7% of D-mer, Mn = 95 kg/mol, polydispersity index I=1.63) and monitored its morphology through its change in crystallinity ratio, everything else remaining constant.Three types of samples were studied: 100% amorphous (A), semi-crystalline with 5% (SC5) and 35% (SC35) crystallinity.The samples morphologies were characterized through DSC, polarized optical microscopy (POM) and SEM. Enzymatic erosion kinetics were measured through weight loss experiments for the 3 polymers and the erosion patterns were observed over time through atomic force microscopy (AFM) and SEM. In order to interpret the results, we combined a simple two-phase geometric erosion model with the well-known Michaelis-Menten model for enzymatic kinetics. Our geometric erosion model is based on the evolution of the erosion front with time induced by the erosion rate difference between crystalline and amorphous regions. This new model accounts very well for the experimental results. Moreover, we observed a morphology-dependent release of fragments, which the model is also able to predict. In particular, one observes the release of spherulites as long as they are smaller than a critical size determined in the model. Some important consequences relevant for the understanding of the formation of micro-plastics in the ocean can be drawn from these experiments.