Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alkahari, Mohd Rizal

  • Google
  • 3
  • 10
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Review on effect of heat input for wire arc additive manufacturing processcitations
  • 2019Indoor Air Concentration from Selective Laser Sintering 3D Printer using Virgin Polyamide Nylon (PA12) Powder: A Pilot Study7citations
  • 2019Emission of selected Environmental Exposure from Selective Laser Sintering (SLS) Polyamide Nylon (PA12) 3D printing Processcitations

Places of action

Chart of shared publication
Herawan, S. G.
1 / 1 shared
Maidin, Shajahan Bin
1 / 1 shared
Ramli, Faiz Redza Bin
1 / 1 shared
Abdollah, Mohd Fadzli Bin
1 / 2 shared
Rosli, Nor Ana
1 / 1 shared
Fauadi, Muhammad Hafidz Fazli Md
2 / 3 shared
Bakri, Siti Farhana Zainal
1 / 1 shared
Hariri, Azian
2 / 6 shared
Damanhuri, Amir Abdullah Muhamad
2 / 4 shared
Omar, Mohamad Rafi
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Herawan, S. G.
  • Maidin, Shajahan Bin
  • Ramli, Faiz Redza Bin
  • Abdollah, Mohd Fadzli Bin
  • Rosli, Nor Ana
  • Fauadi, Muhammad Hafidz Fazli Md
  • Bakri, Siti Farhana Zainal
  • Hariri, Azian
  • Damanhuri, Amir Abdullah Muhamad
  • Omar, Mohamad Rafi
OrganizationsLocationPeople

document

Emission of selected Environmental Exposure from Selective Laser Sintering (SLS) Polyamide Nylon (PA12) 3D printing Process

  • Omar, Mohamad Rafi
  • Fauadi, Muhammad Hafidz Fazli Md
  • Hariri, Azian
  • Damanhuri, Amir Abdullah Muhamad
  • Alkahari, Mohd Rizal
Abstract

Indoor Air Quality (IAQ) is very important to the health and comfort of occupants inside building. The quality of indoor air depends on the air pollutant inside the building. A bad IAQ in workplace will lead to negative impacts to the operators such as dizziness, irritation, headache and others. Additive manufacturing is one of the emerging technologies that has been discussed recently. However, the study on emission from 3D printing process are still focused on FDM type 3D printer. Less attention given to the other type of 3D printing especially powder bed fusion particularly selective laser sintering (SLS). Therefore, this study aims to investigates the emission from selective laser sintering of 3D printing process. The design calibration block from SLS printer’s manufacturer is selected to be printed to measure the emission from SLS printing. The powder material use in this research was polyamide nylon (PA12) powder material. The data collected for 8 hours during whole printing process. Temperature, relative humidity, carbon dioxide (CO2), total volatile organic compound (TVOC), and formaldehyde were measured and compared to the acceptable limit for Industrial Code of Practice (ICOP) DOSH 2010. The highest concentration of carbon dioxide CO2 is at preparation for during printing phase 999 ppm and almost exceed the limit of 1000 ppm. Meanwhile, TVOC, formaldehyde, RH and temperature were measured at 1.7 ppm, 0.05 ppm, 70.6%, and 27.6 °C accordingly. The concentration of TVOC and formaldehyde are in the range of acceptable limit. RH and temperature meanwhile slightly over acceptable limit during SLS machine operation due to laser temperature. The data collected from the emissions of selective laser sintering (SLS) 3D printing by polyamide nylon powder suggest that ventilation system of the location should be improved to remove excess pollutant air and fresh air is suggest to supply constantly to the occupant.

Topics
  • impedance spectroscopy
  • compound
  • Carbon
  • phase
  • laser emission spectroscopy
  • organic compound
  • sintering
  • laser sintering
  • static light scattering