Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nasir, N. S. Mohd

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Effect of welding heat input on microstructure and mechanical properties at coarse grain heat affected zone of ABS grade a steelcitations

Places of action

Chart of shared publication
Muda, W. S. H. Wan
1 / 1 shared
Jamian, Saifulnizan
1 / 16 shared
Mamat, Sarizam
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Muda, W. S. H. Wan
  • Jamian, Saifulnizan
  • Mamat, Sarizam
OrganizationsLocationPeople

document

Effect of welding heat input on microstructure and mechanical properties at coarse grain heat affected zone of ABS grade a steel

  • Muda, W. S. H. Wan
  • Jamian, Saifulnizan
  • Nasir, N. S. Mohd
  • Mamat, Sarizam
Abstract

The fabrication and construction of structures used in the offshore and marine industries shall be made according to the international code and standard requirements to ensure the quality and to extend the life span. Proper material selection needs to be carried out to achieve proper function and to reduce the cost. The ABS Grade A steel is one of the huge materials used in the marine industries. The study has been carried out to scrutinize the effect of welding heat input to the distribution of microstructure formation and its mechanical properties at CGHAZ of the ABS Grade A steel. Three heat input combinations designated as low heat (0.99 kJ/rnm), medium heat (1.22 Wrnrn) and high heat (2.25 kJ/mm) have been used to the weld specimen by using flux cored arc welding (FCAW) process. The microstructure formation at CGHAZ consists of grain boundary ferrite (GBF), Widmanstatten ferrite (WF) and pearlite (P). Significant grain coarsening was observed at the coarse grain heat affected zone (CGHAZ) of all the joints and it was found that the extent of grain coarsening at CGHAZ increased with the increase in the heat input. The results of the mechanical investigation indicate that the joints made using low heat input exhibit higher hardness and impact toughness value than those welded with medium and high heat input. It can be concluded that the higher the heat input, the higher the grain size of microstructure but will lead to lower hardness and impact toughness value

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • grain boundary
  • steel
  • hardness