People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cook, Richard
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Effect of chromium and molybdenum increment on the crystal structure, nanoindentation and corrosion properties of cobalt based alloyscitations
- 2022Measuring the elastic modulus of soft biomaterials using nanoindentationcitations
- 2020A comparative study on the physicochemical characteristics of nanoparticles released in vivo from CoCrMo tapers and cement-stem interfaces of total hip replacements
- 2019The effects of substrate dilution on the microstructure and wear resistance of PTA Cu-Al-Fe aluminium bronze coatingscitations
- 2018The effect of micro-abrasion on enamel using abrasive slurries
- 2018Defect-free TiC/Si multi-layer electrical discharge coatingscitations
- 2017Investigation of wear and corrosion products from around explanted CoCrMo tapers
- 2017Inside a feather
- 2016Influence of the manufacturing finishing on the nano-scale wear resistance at the taper-trunnion interface in hip implants
- 2016Nano-scale wear characterization of CoCrMo biomedical alloyscitations
- 2016The importance of the film structure during self-powered Ibuprofen salicylate drug release from polypyrrole electrodeposited on AZ31 Mgcitations
- 2015Sub-surface characterisation of tribological contact zone of metal hip prosthesescitations
- 2015Microstructure characterisation of hypereutectoid aluminium bronze composite coatingcitations
- 2014The effect of large-area pulsed electron beam melting on the corrosion and microstructure of a Ti6Al4V alloycitations
- 2013Pulsed electron beam surface melting of CoCrMo alloy for biomedical applicationscitations
- 2013Pseudotumour formation due to tribocorrosion at the taper interface of large diameter metal on polymer modular total hip replacementscitations
Places of action
Organizations | Location | People |
---|
document
Inside a feather
Abstract
Feathers have been evolving for more than 130 million years under selection pressures to become light, stiff and strong. However, a detailed investigation into their material structure (and properties) is still lacking. Previously, using nanoindentation and μCT, we have shown that feather shafts are fibrous laminar composites and that their structure varies between species. Here we show a feather’s structure also varies around its circumference and along its length. We present the first synchrotron radiation computed tomography (SR-CT) dataset, from which we infer fibre orientation inside the feather shaft cortex. Scans of different locations on the shaft show that the number of laminae and fibre alignment within feather shafts of the heaviest flying bird, the Swan, are not fixed; they vary both around the circumference of the shaft and along its length. Our work opens a new perspective on a research question in avian biology which has remained unanswered for more than 30 years: what is the modulus of feather-keratin? To answer this question, one needs to take into account not only the shaft’s geometry but also its layup.