Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vilkman, Marja

  • Google
  • 8
  • 18
  • 58

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2010Self-assembly of cationic rod-like poly(2,5-pyridine) by acidic bis(trifluoromethane)sulfonimide in the hydrated state:A highly-ordered self-assembled protonic conductor7citations
  • 2010Substrate-facilitated nanoparticle sintering and component interconnection procedure44citations
  • 2010Structural investigations and processing of electronically and protonically conducting polymers:Dissertationcitations
  • 2010Self-assembly of cationic rod-like poly(2,5-pyridine) by acidic bis(trifluoromethane)sulfonimide in the hydrated state7citations
  • 2010Structural investigations and processing of electronically and protonically conducting polymerscitations
  • 2008Fabrication of thin-film organic memory elementscitations
  • 2007Metallic nanoparticles in a polymeric matrixcitations
  • 2007Metallic nanoparticles in a polymeric matrix:Electrical impedance switching and negative differential resistancecitations

Places of action

Chart of shared publication
Lankinen, A.
2 / 8 shared
Kostamo, P.
2 / 4 shared
Volk, N.
2 / 2 shared
Ikkala, O.
2 / 8 shared
Allen, M.
1 / 3 shared
Alastalo, Ari
1 / 22 shared
Leppäniemi, Jaakko
1 / 11 shared
Mattila, T.
1 / 3 shared
Sandberg, Henrik G. O.
3 / 9 shared
Solehmainen, Kimmo
1 / 5 shared
Hassinen, Tomi
3 / 10 shared
Laiho, Ari
2 / 7 shared
Baral, Jayanta
2 / 2 shared
Tenhu, Heikki
2 / 35 shared
Ikkala, Olli
2 / 33 shared
Ras, Robin
2 / 4 shared
Österbacka, Ronald
2 / 19 shared
Nuopponen, Markus
2 / 5 shared
Chart of publication period
2010
2008
2007

Co-Authors (by relevance)

  • Lankinen, A.
  • Kostamo, P.
  • Volk, N.
  • Ikkala, O.
  • Allen, M.
  • Alastalo, Ari
  • Leppäniemi, Jaakko
  • Mattila, T.
  • Sandberg, Henrik G. O.
  • Solehmainen, Kimmo
  • Hassinen, Tomi
  • Laiho, Ari
  • Baral, Jayanta
  • Tenhu, Heikki
  • Ikkala, Olli
  • Ras, Robin
  • Österbacka, Ronald
  • Nuopponen, Markus
OrganizationsLocationPeople

document

Metallic nanoparticles in a polymeric matrix

  • Vilkman, Marja
  • Laiho, Ari
  • Sandberg, Henrik G. O.
  • Baral, Jayanta
  • Tenhu, Heikki
  • Hassinen, Tomi
  • Ikkala, Olli
  • Ras, Robin
  • Österbacka, Ronald
  • Nuopponen, Markus
Abstract

Future organic electronic and nanoelectronic applications will needorganic memories as the devices and circuits get more complex. However, untilvery recently there has been limited research on the subject. Recentdiscoveries allow organic bistable devices to be used for nonvolatile memoryapplications [1]. We present a memory device concept that utilizes metallicnanoparticles dispersed in an insulating matrix. The simple structure allowsone-step active layer deposition and thus paves the way for roll-to-rollprocessing.The main objective of this work is to develop memory units that can bemanufactured in a rapid and economical fashion. The printing process offerstools for this purpose, but requires air-stable materials. Thus the use ofgold nanoparticles (Figure 1) in a polystyrene matrix is a feasiblealternative. However, other materials are also investigated.Figure 1: Gold nanoparticle with polystyrene tails (left) and a TEM picture,which shows that the particles are evenly distributed in the polymer matrix(right).Even distribution of nanoparticles is a requirement for optimal deviceoperation. The TEM picture in Figure 1 shows that the gold particles spreadevenly in the matrix. A resistance switching phenomenon can be observed inthis nanoscale composite when contacted in a sandwich structure. Although theswitching is still inconsistent, the negative differential resistance isconsistent, which can also be utilized in a memory device. (Figure 2)Figure 2: I-V characteristics of a Au-particle memory device.1. Himadri S. Majumdar, Jayanta K. Baral, Ronald Österbacka, Olli Ikkala, andHenrik Stubb, Fullerene-based bistable devices and associatednegative-differential-resistance effect, Organic Electronics 6 (2005) 188-192.

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • polymer
  • gold
  • composite
  • transmission electron microscopy