Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sandberg, Henrik G. O.

  • Google
  • 9
  • 21
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2014Roll-to-roll compatible organic thin film transistor manufacturing technique by printing, lamination, and laser ablation20citations
  • 2009Organic thin film transistor gate dielectrics by utilization of different aluminium oxide growth methodscitations
  • 2008Fabrication of thin-film organic memory elementscitations
  • 2008Polymer Field-Effect Transistorscitations
  • 2007Metallic nanoparticles in a polymeric matrixcitations
  • 2007Towards printable organic field-effect transistors based on poly(3, 3’’’-didodecyl quarter thiophene) utilizing a crosslinkable gate dielectric layercitations
  • 2007Metallic nanoparticles in a polymeric matrix:Electrical impedance switching and negative differential resistancecitations
  • 2005A novel method to orient semiconducting polymer films18citations
  • 2004The influence of lipophilic additives on the emeraldine base-emeraldine salt transition of polyaniline19citations

Places of action

Chart of shared publication
Laakso, Petri
1 / 14 shared
Penttilä, Raimo
1 / 5 shared
Ruotsalainen, Teemu
2 / 2 shared
Hassinen, Tomi
5 / 10 shared
Björklund, N.
1 / 1 shared
Vilkman, Marja
3 / 8 shared
Solehmainen, Kimmo
1 / 5 shared
Laiho, Ari
2 / 7 shared
Baral, Jayanta
2 / 2 shared
Tenhu, Heikki
2 / 35 shared
Ikkala, Olli
2 / 33 shared
Ras, Robin
2 / 4 shared
Österbacka, Ronald
3 / 19 shared
Nuopponen, Markus
2 / 5 shared
Jussila, Salme
1 / 2 shared
Torkkeli, Mika
1 / 8 shared
Serimaa, Ritva
1 / 14 shared
Bäcklund, Tomas G.
1 / 1 shared
Stubb, Henrik
1 / 1 shared
Lindfors, Tom
1 / 13 shared
Ivaska, Ari
1 / 3 shared
Chart of publication period
2014
2009
2008
2007
2005
2004

Co-Authors (by relevance)

  • Laakso, Petri
  • Penttilä, Raimo
  • Ruotsalainen, Teemu
  • Hassinen, Tomi
  • Björklund, N.
  • Vilkman, Marja
  • Solehmainen, Kimmo
  • Laiho, Ari
  • Baral, Jayanta
  • Tenhu, Heikki
  • Ikkala, Olli
  • Ras, Robin
  • Österbacka, Ronald
  • Nuopponen, Markus
  • Jussila, Salme
  • Torkkeli, Mika
  • Serimaa, Ritva
  • Bäcklund, Tomas G.
  • Stubb, Henrik
  • Lindfors, Tom
  • Ivaska, Ari
OrganizationsLocationPeople

document

Metallic nanoparticles in a polymeric matrix

  • Vilkman, Marja
  • Laiho, Ari
  • Sandberg, Henrik G. O.
  • Baral, Jayanta
  • Tenhu, Heikki
  • Hassinen, Tomi
  • Ikkala, Olli
  • Ras, Robin
  • Österbacka, Ronald
  • Nuopponen, Markus
Abstract

Future organic electronic and nanoelectronic applications will needorganic memories as the devices and circuits get more complex. However, untilvery recently there has been limited research on the subject. Recentdiscoveries allow organic bistable devices to be used for nonvolatile memoryapplications [1]. We present a memory device concept that utilizes metallicnanoparticles dispersed in an insulating matrix. The simple structure allowsone-step active layer deposition and thus paves the way for roll-to-rollprocessing.The main objective of this work is to develop memory units that can bemanufactured in a rapid and economical fashion. The printing process offerstools for this purpose, but requires air-stable materials. Thus the use ofgold nanoparticles (Figure 1) in a polystyrene matrix is a feasiblealternative. However, other materials are also investigated.Figure 1: Gold nanoparticle with polystyrene tails (left) and a TEM picture,which shows that the particles are evenly distributed in the polymer matrix(right).Even distribution of nanoparticles is a requirement for optimal deviceoperation. The TEM picture in Figure 1 shows that the gold particles spreadevenly in the matrix. A resistance switching phenomenon can be observed inthis nanoscale composite when contacted in a sandwich structure. Although theswitching is still inconsistent, the negative differential resistance isconsistent, which can also be utilized in a memory device. (Figure 2)Figure 2: I-V characteristics of a Au-particle memory device.1. Himadri S. Majumdar, Jayanta K. Baral, Ronald Österbacka, Olli Ikkala, andHenrik Stubb, Fullerene-based bistable devices and associatednegative-differential-resistance effect, Organic Electronics 6 (2005) 188-192.

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • polymer
  • gold
  • composite
  • transmission electron microscopy