Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fica-Contreras, Sebastian M.

  • Google
  • 2
  • 6
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Long Vibrational Lifetime R-Selenocyanate Probes for Ultrafast Infrared Spectroscopy: Properties and Synthesis.12citations
  • 2019Fast dynamics of a hydrogen-bonding glass forming liquid: Chemical exchange-induced spectral diffusion in 2D IR spectroscopy.citations

Places of action

Chart of shared publication
Hoffman, David J.
2 / 3 shared
Fayer, Michael D.
2 / 4 shared
Yassin, Omer
1 / 1 shared
Daniels, Robert
1 / 1 shared
Sotzing, Gregory
1 / 2 shared
Pan, Junkun
1 / 2 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Hoffman, David J.
  • Fayer, Michael D.
  • Yassin, Omer
  • Daniels, Robert
  • Sotzing, Gregory
  • Pan, Junkun
OrganizationsLocationPeople

article

Fast dynamics of a hydrogen-bonding glass forming liquid: Chemical exchange-induced spectral diffusion in 2D IR spectroscopy.

  • Hoffman, David J.
  • Fayer, Michael D.
  • Fica-Contreras, Sebastian M.
Abstract

Polarization-selective Two Dimensional Infrared (2D IR) and IR pump-probe spectroscopies have been performed on the hydrogen bonding glass forming liquid 2-biphenylmethanol doped with the long-lived vibrational probe phenylselenocyanate over a wide range of temperatures. The spectral diffusion seen in the 2D spectra was found to have a large polarization dependence, in large excess of what is predicted by standard theory. This anomaly was explained by decomposing the 2D spectra into hydrogen-bonding and non-bonding components, which exchange through large-angle orientational motion. By adapting chemical exchange theories, parameters for the component peaks were then calculated by fitting the polarization-dependent spectral diffusion and the pump-probe anisotropy. A model of highly heterogeneous exchange and orientational dynamics was used to explain the observed time dependences as a function of temperature on fast time scales. The experimental observations, the kinetic modeling, and physical arguments lead to the determination of the times for interconversion of slow dynamics structural domains to fast dynamics structural domains in the supercooled liquid as a function of temperature. The slow to fast domain interconversion times range from 40 ps at 355 K to 5000 ps at 270 K.

Topics
  • impedance spectroscopy
  • theory
  • glass
  • glass
  • Hydrogen
  • forming
  • infrared spectroscopy