People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engberg, Sara Lena Josefin
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Advances in the one-step synthesis of 2D and 3D sulfide materials grown by pulsed laser deposition assisted by a sulfur thermal crackercitations
- 2022Silver-substituted (Ag1-xCux)2ZnSnS4 solar cells from aprotic molecular inkscitations
- 2022Tuning the band gap of CdS in CZTS/CdS solar cells
- 2022The effect of soft-annealing on sputtered Cu2ZnSnS4 thin-film solar cellscitations
- 2022A facile strategy for the growth of high-quality tungsten disulfide crystals mediated by oxygen-deficient oxide precursorscitations
- 2022Solution-processed CZTS and its n-layers
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Monolithic thin-film chalcogenide–silicon tandem solar cells enabled by a diffusion barriercitations
- 2020Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Reviewcitations
- 2020Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Reviewcitations
- 2019Thin films of CZTS and CZTO for solar cells produced by pulsed laser deposition
- 2019Thin films of CZTS and CZTO for solar cells produced by pulsed laser deposition
- 2018Liquid phase assisted grain growth in Cu2ZnSnS4 nanoparticle thin films by alkali element incorporationcitations
- 2017Investigation of Cu 2 ZnSnS 4 nanoparticles for thin-film solar cell applicationscitations
- 2017The effect of dopants on grain growth and PL in CZTS nanoparticle thin films for solar cell applications
- 2017Na-assisted grain growth in CZTS nanoparticle thin films for solar cell applications
- 2017Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films
- 2017Investigation of Cu2ZnSnS4 nanoparticles for thin-film solar cell applicationscitations
- 2017Spray-coated Cu2ZnSnS4 thin films for large-scale photovoltaic applications
- 2016High frequency pulse anodising of magnetron sputtered Al–Zr and Al–Ti Coatingscitations
- 2016Cu2ZnSnS4 Nanoparticle Absorber Layers for Thin-Film Solar Cells
- 2016Synthesis of ligand-free CZTS nanoparticles via a facile hot injection routecitations
- 2015Optimized Packing Density of Large CZTS Nanoparticles Synthesized by Hot-injection for Thin Film Solar Cells.
- 2015Large CZTS Nanoparticles Synthesized by Hot-Injection for Thin Film Solar Cells.
- 2015Synthesis of large CZTSe nanoparticles through a two-step hot-injection methodcitations
- 2014Appearance of anodised aluminium: Effect of alloy composition and prior surface finishcitations
- 2014Annealing in sulfur of CZTS nanoparticles deposited through doctor blading
- 2014Study of Grain Growth of CZTS Nanoparticles Annealed in Sulfur Atmosphere
Places of action
Organizations | Location | People |
---|
conferencepaper
Solution-processed CZTS and its n-layers
Abstract
One key compound in the search for the next-generation photovoltaic (PV) absorber material is the kesterite (Cu<sub>2</sub>ZnSn(S<sub>x</sub>Se<sub>1−x</sub>)<sub>4</sub> or CZTSSe): As a p-type semiconductor with a tunable band gap and high absorption coefficient, it is considered the potential successor of Cu(In,Ga)Se<sub>2</sub> (CIGS) in the field of thin-film PV. In particular, the pure-sulfide Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) contains neither toxic (Cd or Se) nor rare (In and Ga) elements. Additionally, it adapts a similar device architecture and thus comparable manufacturing facilities as the commercially available CIGS. Of the fabrication methods available to synthesize CZTSSe, solution-processing is interesting from an economical perspective. Non-vacuum methods offer a lower environmental impact due to lower electricity consumption in the manufacturing stage, and lower capital expenditure (CAPEX) for establishing production lines. The „DMSO aprotic molecular ink” route has recently proven a competitive approach for synthesis of CZTSSe with power conversion efficiencies exceeding 10%. Meanwhile, limited effort has been devoted to synthesis of the pure-sulfide CZTS from the solvent DMSO, even though the sulfide kesterite and its alloys have more favorable band gaps for advanced tandem concepts. In our work, CZTS solar cells with an efficiency of 4.65% were synthesized under ambient conditions. This talk is divided into two parts. First, I will share our results on solution-processed CZTS and map out the process from ink to film to understand the mechanism of formation. Several things happen from once you mix your salts until the final film has formed. We review processes such as complex formation, the thermal behavior of the ink, and how the film dries and crystallizes. Secondly, I will introduce our current work on new n-type layers, and present the research objectives for our current projects.