People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sabet, Arash Shafiee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Effects of temperature on friction and degradation of dry film lubricants during sliding against aluminum alloy sheetscitations
- 2023Influence of alloy composition and lubrication on the formability of Al-Mg-Si alloy blankscitations
- 2023Influence of natural aging on the formability of Al-Mg-Si alloy blankscitations
- 2022Improving deep drawing simulations based on tribological investigations
- 2021Tribological investigations on aluminum alloys at different contact conditions for simulation of deep drawing processescitations
- 2021Characterization of wear and friction between tool steel and aluminum alloys in sheet forming at room temperaturecitations
Places of action
Organizations | Location | People |
---|
document
Improving deep drawing simulations based on tribological investigations
Abstract
Blanks of aluminum alloys 5xxx and 6xxx with electric discharge texture (EDT) or milled finish (MF) surface condition are widely used in the automotive industry. The particular tribological conditions during forming of these blanks influence both the product quality and the tool life. Reliable finite element (FE) models which consider the actual contact conditions are required for successful simulation of aluminum sheet forming. Therefore, tribology experiments are useful for creating contact models which represent the actual tribological system between the tool and the blank. In this work, pin-on-plate tribology tests using plates of aluminum alloys 5xxx and 6xxx were performed at different contact pressures, sliding velocities and surface temperatures for investigating the coefficient of friction (COF). The obtained COF as well as the surface topographies of the aluminum blanks were imported into the TriboForm R3 software for generating a multi-factor friction model, which was subsequently applied in deep-drawing simulations using the AutoForm R8 software. The simulation results based on the multi-factor friction model were validated with physical forming trials. The results showed that the multi-factor friction model generally improves the predictive quality of FE simulations.