People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mosig, Oliver
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Spallationsversuche von Faserbetonprobekörpern im Split-Hopkinson-Bar
- 2020An Experimental Investigation of the Behavior of Strain-Hardening Cement-Based Composites (SHCC) under Impact Compression and Shear Loadingcitations
- 2020The crack propagation velocity as a reason for the strain rate effect of concrete: An analytical modelcitations
- 2020Crack Propagation Velocity Determination by High-speed Camera Image Sequence Processingcitations
Places of action
Organizations | Location | People |
---|
article
Spallationsversuche von Faserbetonprobekörpern im Split-Hopkinson-Bar
Abstract
Spalling tests of fiber reinforced concrete in the split-Hopkinson-bar. The dynamic material parameters modulus of elasticity, tensile strength and fracture energy were determined on the basis of spalling tests in the split-Hopkinson-bar on fiber-reinforced concrete specimens. Concretes of the strength classes C20/25, C40/50 and C80/95 with steel fiber contents of 0 to 2.0 vol % and also with carbon and PP fibers in the strain rate range of about 15 to 25 1/s were investigated. The results show an increase in the dynamic tensile strength and the dynamic modulus of elasticity with increasing fiber content. The addition of fibers also leads to an enormous increase in the fracture energy compared to non-reinforced specimens, which is higher for the steel fibers compared to the carbon and PP fibers. With 1.0 vol % of steel fibers, a tenfold increase in the fracture energy was determined. Furthermore, it was found that the portion of the single fiber in the bond strength decreases with increasing fiber content, since the more difficult processability results in an inhomogeneous fiber distribution with worse bonding properties.