People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Savva, Achilleas
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Effects of Processing-Induced Contamination on Organic Electronic Devices.
- 2023Capture and Release of Cancer Cells Through Smart Bioelectronics.
- 2023Effects of processing‐induced contamination on organic electronic devicescitations
- 2021Regiochemistry-driven organic electrochemical transistor performance enhancement in ethylene glycol-functionalized polythiophenescitations
- 2020Optical and Electronic Ion Channel Monitoring from Native Human Membranes.citations
- 2020Optical and Electronic Ion Channel Monitoring from Native Human Membranes.
- 2018The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes
- 2018The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.
- 2016Improved Performance and Reliability of p‐i‐n Perovskite Solar Cells via Doped Metal Oxidescitations
Places of action
Organizations | Location | People |
---|
article
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes
Abstract
We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.