Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Amanatullah, Derek F.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Effect of Trabecular Metal on the Elution of Gentamicin from Palacos Cement.citations

Places of action

Chart of shared publication
Bhutani, Nidhi
1 / 2 shared
Manasherob, Robert
1 / 1 shared
Mooney, Jake A.
1 / 1 shared
Smeriglio, Piera
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Bhutani, Nidhi
  • Manasherob, Robert
  • Mooney, Jake A.
  • Smeriglio, Piera
OrganizationsLocationPeople

article

Effect of Trabecular Metal on the Elution of Gentamicin from Palacos Cement.

  • Amanatullah, Derek F.
  • Bhutani, Nidhi
  • Manasherob, Robert
  • Mooney, Jake A.
  • Smeriglio, Piera
Abstract

Periprosthetic joint infections continues to be a common complication in total joint arthroplasty, resulting in significant morbidity, mortality and additional costs. Antibiotic loaded bone cement has profoundly reduced the incidence of infection and revision. Trabecular metal implants with an internal cemented interface may be customizable drug delivery devices with an ingrowth interface. Thirty-six acetabular implants were assembled in vitro, half with a trabecular metal shell and half without. The antibiotic loaded bone cement was prepared via three different mixing techniques and at two mixing times. Mixing time had a significant effect on the total amount of gentamicin eluted. The long mix protocol eluted up to 126% (p=0.001) more gentamicin than the short mix at four hours and 192% (p<0.001) more at seven days. The use of a trabecular metal shell had no significant effect at four hours (p>0.05) but significantly reduced total elution under certain mixing protocols at seven days. Mixing technique had no significant effect on elution at four hours. At seven days, the mechanical mixing system under vacuum eluted over 50% (p=0.031) more antibiotic than without a vacuum and nearly 60% (p=0.040) more antibiotic than hand mixing. The use of trabecular metal implants does not significantly inhibit the initial bulk elution of gentamicin. A possible optimization strategy to improve elution kinetics would be to use a long mixing time with a mechanical mixing system under vacuum. This article is protected by copyright. All rights reserved.

Topics
  • impedance spectroscopy
  • cement
  • mechanical mixing
  • elution