People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burkhardt, Carlo
Jožef Stefan International Postgraduate School
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Production of Permanent Magnets from Recycled NdFeB Powder with Powder Extrusion Mouldingcitations
- 2024Sinter-Based Additive Manufacturing of Ni-Ti Shape Memory Alloy
- 2021Powder content in powder extrusion moulding of tool steelcitations
- 2017Isotropic NdFeB hard magnets
- 2017SHAPING, DEBINDING AND SINTERING OF STEEL COMPONENTS VIA FUSED FILAMENT FABRICATION
- 2017The SDS process: A viable way for the production of metal parts
- 2017Special Binder Systems for Metal Powders in Highly Filled Filaments for Fused Filament Fabrication
- 2017Fused Filament Fabrication for the production of metal and/or ceramic parts and feedstocks therefore
- 2017The production of magnets by FFF - Fused Filament Fabrication
- 2017Metal Injection Moulding for the Production of Recycled Rare Earth Magnets
- 2016Metal Injection Moulding of NdFeB Based on Recycled Powders
- 2016Metal Injection Moulding of NdFeB based on Recycled Powders
Places of action
Organizations | Location | People |
---|
document
Special Binder Systems for Metal Powders in Highly Filled Filaments for Fused Filament Fabrication
Abstract
Fused filament fabrication (FFF) is an extrusion-based additive manufacturing process, which is very popular for the fabrication of polymeric parts with complex geometry. FFF can be used as an economical alternative for the production of metal parts, too, by using filaments with a volume content of metal powder greater than 50 vol%. The additive manufacturing process must be followed by a debinding step and a sintering step. The addition of metal particles to matrices usually used in FFF makes the filaments brittle and non-flexible; therefore the extrusion process during FFF is hindered. In order to overcome the brittleness a special polymeric binder system had to be prepared, consisting of flexible and stiff components. With this matrix and 55 vol% of three different metal powders – stainless steel, titanium and a magnetic alloy of NdFeB – filaments were produced and their tensile properties were tested. The printing trials, performed on a conventional FFF machine, proved that all of those materials were still printable even though their tensile properties were very different. The printed parts were debound with a solvent and after sintering metallic parts were obtained.