People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arbeiter, Florian Josef
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Effects of Printing Direction and Multi-material on Hardness of Additively Manufactured Thermoplastic Elastomers for Comfortable Orthoses and Prosthesescitations
- 2023Effects of simulated body fluid on the mechanical properties of polycarbonate polyurethane produced via material jettingcitations
- 2023Determination of creep crack growth kinetics of ABS via the C* approach at different temperaturescitations
- 2023Concepts towards bio-inspired multilayered polymer-compositescitations
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2022Combined Crack Initiation and Crack Growth Model for Multi-Layer Polymer Materialscitations
- 2022Ermüdungsverhalten von 3D-gedrucktem endlosfaserverstärktem Polylactid
- 2022Influence of layer architecture on fracture toughness and specimen stiffness in polymer multilayer compositescitations
- 2022Multimaterial Extrusion-Based Additive Manufacturing of Compliant Crack Arrestercitations
- 2022Effect of die temperature on the fatigue behaviour of PLA produced by means of fused filament fabrication
- 2022Mechanisms of rapid fracture in PA12 gradescitations
- 2022The Effects of Washing and Formaldehyde Sterilization on the Mechanical Performance of Poly(methyl Methacrylate) (PMMA) Parts Produced by Material Extrusion-Based Additive Manufacturing or Material Jettingcitations
- 2021Optimization of Mechanical Properties and Damage Tolerance in Polymer-Mineral Multilayer Compositescitations
- 2021Morphology and Weld Strength of a Semi-Crystalline Polymer Produced via Material Extrusion-Based Additive Manufacturing
- 2021Bending Properties of Lightweight Copper Specimens with Different Infill Patterns Produced by Material Extrusion Additive Manufacturing, Solvent Debinding and Sinteringcitations
- 2021Damage tolerance and fracture properties in fused filament fabrication - trends, limitations and possibilities
- 2021Size-Induced Constraint Effects on Crack Initiation and Propagation Parameters in Ductile Polymerscitations
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2020Exploiting the Carbon and Oxa Michael Addition Reaction for the Synthesis of Yne Monomerscitations
- 2020Fatigue characterization of polyethylene under mixed mode I/III conditionscitations
- 2019Inter-layer bonding characterisation between materials with different degrees of stiffness processed by fused filament fabricationcitations
- 2019Fatigue Crack Propagation under Mixed Mode I and III in Polyoxymethelene Homopolymercitations
- 2019Application of the material inhomogeneity effect for the improvement of fracture toughness of a brittle polymercitations
- 2019Mechanical Recyclability of Polypropylene Composites Produced by Material Extrusion-Based Additive Manufacturingcitations
- 2019Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturingcitations
- 2019Erhöhung der Bruchzähigkeit durch Multischichtaufbau
- 2019Bioinspired toughness improvement through soft interlayers in mineral reinforced polypropylenecitations
- 2018Using (VA)RTM with a Rigid Mould to Produce Fibre Metal Laminates with Proven Impact Strengthcitations
- 2018Comparison of J-integral methods for the characterization of tough polypropylene grades close to the glass transition temperaturecitations
- 2018Polypropylene Filled With Glass Spheres in Extrusion‐Based Additive Manufacturingcitations
- 2017FILLER CONTENT AND PROPERTIES OF HIGHLY FILLED FILAMENTS FOR FUSED FILAMENT FABRICATION OF MAGNETS
- 2017Special Binder Systems for Metal Powders in Highly Filled Filaments for Fused Filament Fabrication
- 2017Fracture mechanics methods to assess the lifetime of thermoplastic pipescitations
- 2017Special Binder Systems for the Use with Metal Powders for Highly Filled Filaments for Fused Filament Fabrication
- 2017Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturingcitations
- 2016Multi-layer sewer pipes: long-term performance and influence of artificial ageing
- 2016Fast comparison of different polymeric pipe materials: Extending the use of the cyclic CRB-Test (ISO 18489)
- 2016Bonding Forces in Fused Filament Fabrication
- 2015Evaluation of long-term properties of polymeric pipe grade materials using fatigue tests and fracture mechanics
- 2015Cyclic tests on cracked round bars as a quick tool to assess the long term behaviour of thermoplastics and elastomerscitations
Places of action
Organizations | Location | People |
---|
document
Multi-layer sewer pipes: long-term performance and influence of artificial ageing
Abstract
To increase performance of modern pipe systems functionalized multi-layer build ups become increasingly interesting to answer market demands. Whereas single-layer pipe systems made from polyolefins have been the focus of research for many years, the influence of multi-layer build ups has not been investigated in detail yet. Often multilayer pipe consist of three different layers. For example a pipe may consist of an inner layer which is resistant against abrasion, chemicals and slow crack growth, a middle layer with high stiffness for mechanical strength and an outer layer which offers resistance against external scratches and point loads. To describe the long-term behaviour of a system as defined above, detailed knowledge about the single materials, as well as the influence of the interfaces in between is required. <br/>This work focuses on the impact of multi-layer build ups on long-term performance of polymer pipes. Long-term resistance against crack growth of the single materials has been investigated using accelerated fatigue methods. To estimate changes in mechanical response compared to homogenous pipes, finite element analysis has been used. Additionally, local interface properties have been investigated using X-ray scattering and Raman-microscopy. Due to long service times of pipes, ageing processes in the materials have to be regarded as well. To induce artificially accelerated ageing, materials were stored at elevated temperatures for up to 18 months. Afterwards, changes due to physical and chemical ageing were investigated using thermic, mechanical and fracture mechanical methods.<br/>With regard to crack propagation through a pipe wall, it was found, that the presence of interfaces influences the resulting crack driving force significantly when compared to a homogenous pipe. Depending on the miss-match of elastic properties of the materials, cracks may be accelerated or decelerated in the vicinity of an interface. Spectroscopy and scattering techniques showed promising results in regard to interdiffusion and mechanical stability of the interfaces. The ageing study revealed, that even after 18 months of accelerated ageing, used stabilizer combinations were sufficient to inhibit chemical degradation of materials. Accelerated ageing procedure led to effects which do not occur under actual application conditions. These have to be considered to avoid non-conservative results. <br/>