People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arbeiter, Florian Josef
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Effects of Printing Direction and Multi-material on Hardness of Additively Manufactured Thermoplastic Elastomers for Comfortable Orthoses and Prosthesescitations
- 2023Effects of simulated body fluid on the mechanical properties of polycarbonate polyurethane produced via material jettingcitations
- 2023Determination of creep crack growth kinetics of ABS via the C* approach at different temperaturescitations
- 2023Concepts towards bio-inspired multilayered polymer-compositescitations
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2022Combined Crack Initiation and Crack Growth Model for Multi-Layer Polymer Materialscitations
- 2022Ermüdungsverhalten von 3D-gedrucktem endlosfaserverstärktem Polylactid
- 2022Influence of layer architecture on fracture toughness and specimen stiffness in polymer multilayer compositescitations
- 2022Multimaterial Extrusion-Based Additive Manufacturing of Compliant Crack Arrestercitations
- 2022Effect of die temperature on the fatigue behaviour of PLA produced by means of fused filament fabrication
- 2022Mechanisms of rapid fracture in PA12 gradescitations
- 2022The Effects of Washing and Formaldehyde Sterilization on the Mechanical Performance of Poly(methyl Methacrylate) (PMMA) Parts Produced by Material Extrusion-Based Additive Manufacturing or Material Jettingcitations
- 2021Optimization of Mechanical Properties and Damage Tolerance in Polymer-Mineral Multilayer Compositescitations
- 2021Morphology and Weld Strength of a Semi-Crystalline Polymer Produced via Material Extrusion-Based Additive Manufacturing
- 2021Bending Properties of Lightweight Copper Specimens with Different Infill Patterns Produced by Material Extrusion Additive Manufacturing, Solvent Debinding and Sinteringcitations
- 2021Damage tolerance and fracture properties in fused filament fabrication - trends, limitations and possibilities
- 2021Size-Induced Constraint Effects on Crack Initiation and Propagation Parameters in Ductile Polymerscitations
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2020Exploiting the Carbon and Oxa Michael Addition Reaction for the Synthesis of Yne Monomerscitations
- 2020Fatigue characterization of polyethylene under mixed mode I/III conditionscitations
- 2019Inter-layer bonding characterisation between materials with different degrees of stiffness processed by fused filament fabricationcitations
- 2019Fatigue Crack Propagation under Mixed Mode I and III in Polyoxymethelene Homopolymercitations
- 2019Application of the material inhomogeneity effect for the improvement of fracture toughness of a brittle polymercitations
- 2019Mechanical Recyclability of Polypropylene Composites Produced by Material Extrusion-Based Additive Manufacturingcitations
- 2019Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturingcitations
- 2019Erhöhung der Bruchzähigkeit durch Multischichtaufbau
- 2019Bioinspired toughness improvement through soft interlayers in mineral reinforced polypropylenecitations
- 2018Using (VA)RTM with a Rigid Mould to Produce Fibre Metal Laminates with Proven Impact Strengthcitations
- 2018Comparison of J-integral methods for the characterization of tough polypropylene grades close to the glass transition temperaturecitations
- 2018Polypropylene Filled With Glass Spheres in Extrusion‐Based Additive Manufacturingcitations
- 2017FILLER CONTENT AND PROPERTIES OF HIGHLY FILLED FILAMENTS FOR FUSED FILAMENT FABRICATION OF MAGNETS
- 2017Special Binder Systems for Metal Powders in Highly Filled Filaments for Fused Filament Fabrication
- 2017Fracture mechanics methods to assess the lifetime of thermoplastic pipescitations
- 2017Special Binder Systems for the Use with Metal Powders for Highly Filled Filaments for Fused Filament Fabrication
- 2017Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturingcitations
- 2016Multi-layer sewer pipes: long-term performance and influence of artificial ageing
- 2016Fast comparison of different polymeric pipe materials: Extending the use of the cyclic CRB-Test (ISO 18489)
- 2016Bonding Forces in Fused Filament Fabrication
- 2015Evaluation of long-term properties of polymeric pipe grade materials using fatigue tests and fracture mechanics
- 2015Cyclic tests on cracked round bars as a quick tool to assess the long term behaviour of thermoplastics and elastomerscitations
Places of action
Organizations | Location | People |
---|
document
Damage tolerance and fracture properties in fused filament fabrication - trends, limitations and possibilities
Abstract
Accompanying the fast rise of additive manufacturing techniques, such as the fused filament fabrication, the desire to use produced parts also in structurally loaded situations has increased rapidly over the course of the last few years. While the design possibilities in additive manufacturing open up large application fields, low mechanical properties, due to the complex processing itself often seem to put an abrupt end to aforementioned plans. <br/>However, these limitations are not always purely based on the processing technique itself. With the fast improvement of machines, the peculiarities of the used material class itself seem to be overlooked as often as not. While it is possible to increase and optimize mechanical properties by dexterous choice of processing conditions, inherent material dependent idiosyncrasies, such as highly strain rate dependent properties, supercooling of the used polymers at the interfaces, and porosity induced notch-effects should also be considered in design. <br/>The current presentation aims to elucidate the possibilities and pitfalls of this commonly used additive manufacturing technique, by demonstrating a wholesome view on the characterization of a structurally loaded component. This includes basic examinations, such as a simple design of experiment to optimize printing parameters, based on resulting interface strength, fracture mechanical characterization of deposition orientation dependent properties, testing of fatigue properties and finally also damage tolerant lifetime estimations, based on a combination of finite element analysis and established material laws. <br/>